• Title/Summary/Keyword: Tool Angle

Search Result 827, Processing Time 0.031 seconds

Analysis on the Effects of Tool Rake Angle and Helix Angle of a Flat End-mill in the Milling of Ti-alloy (티타늄 합금의 밀링가공에서 평 엔드밀의 헬릭스각과 경사각의 영향 분석)

  • Ye, Dong-Hee;Koo, Joon-Young;Park, Young-Koon;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.508-513
    • /
    • 2015
  • In this study, the effect of the helix angle and rake angle of a flat end-mill in the milling of titanium alloy was investigated. Tool shape parameters such as helix angle and rake angle affect the cutting force, cutting zone temperature, vibration, and chip flow mechanism, which in turn determine tool life, surface integrity, and dimensional accuracy of the milling process. To investigate the effect of the helix and rake angles, a certain range of parameters was selected, and three-dimensional tool models were generated for finite element analysis (FEA) for each case. The cutting force and pressure on the tool flank face and rake face were investigated by FEA. Further, several tool models were proposed for machining tests. The cutting force characteristics were investigated by the machining tests.

Machinability Evaluation according to Variation of Endmill Shape for High Speed Machining (고속가공용 엔드밀 형상변화에 따른 가공성 평가)

  • Kang, Myung-Chang;Kim, Jeong-Suk;Lee, Deuk-Woo;Kim, Kwang-Ho;Ha, Dong-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.133-138
    • /
    • 2002
  • The technique of high speed machining is widely studied in machining fields, because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool fur high speed machining in not close behind that of machine tool. In this study, 10 types flat endmill is prepared for obtaining data according to tool shape. Especially, we concentrated in helix angle, number of cutting edge and rake angle. Cutting condition is selected for several experiments and measuring cutting farce, tool life, tool wear and chip shape according to cutting length. 3-axis cutting farces are acquired from the tool dynamometer with high natural frequency, as the conventional tool dynamometer (9257B, Kistler) has cannot measure the state of high frequency force. Particularly, we found out that the axial cutting force waveform has a good relation with tool wear features. And flow is interrupted at the beginning of cutting by the decrease of rake angle. By above results. it is suggested the endmill tool with 45$^{\circ}$helix angle, 6 cutting edge and -15$^{\circ}$rake angle is suitable for high speed machining.

Machining Characteristics in High Speed Endmill Operation considering Clearance angle (고속용 엔드밀 가공 시 여유각을 고려한 가공특성)

  • 고성림;박정남;김경배;서천석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.22-25
    • /
    • 2002
  • The objective of this research is to investigate the effect of clearance angle on cutting performance in high speed endmilling. The tool geometry parameters and cutting process have complex relationship. In order to explain the effect of clearance angle and exist the optimal clearance angle according to the diameter, Using various tool with different clearance angle, numerous cutting tests (cutting force, surface accuracy, too life) was undertaken to show the relationship between clearance angle and cutting process.

  • PDF

A Fabrication of an Angle Trisection Tool Using Veprtskii's Method (Veprtskii의 방법을 활용한 각의 삼등분 도구 제작)

  • Han, Inki
    • Communications of Mathematical Education
    • /
    • v.36 no.4
    • /
    • pp.627-644
    • /
    • 2022
  • In this study various angle trisection tools based on Archimedes' insertion method were investigated, some tools were fabricated and their characteristics were compared. Through these works, it was found that factors such as the convenience of use, arbitrariness of the trisected angle, and simplicity of structure should be considered in the production and utilization of the trisection tool. Considering the factors described above, attention was paid to the method proposed by Veprtskii A.I. in 1888 as a making method of the angle trisection tool. In this study, we improved the method proposed by Veprtskii A.I., we used two wooden chopsticks and a string to make an angle trisection tool. The improved trisection tool had fewer parts than other trisection tools, a simple structure, and more convenient usage. In particular, this tool divided an arbitrary angle(not a specific angle) into the same three parts, and the production cost was low and the production process was simple. This tool is expected to be widely used in concrete activities related to the properties of the exterior angles of triangles and the properties of isosceles triangles in mathematics classrooms.

Tool Geometry for Improving Tool-Life in Turning of STS 304 (STS 304의 선삭에서 공구수명 향상을 위한 공구형상)

  • 이재우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.581-584
    • /
    • 2003
  • The austenitic STS 304 stainless steel was turned to clarify the effects of tool geometry on the tool wear. The wear of TiN-TiCN-TiC-TiAlN coated tungsten carbide tool was the smallest, exhibiting larger wear in the order of Si-Al-O-N ceramic, TiN coated tungsten carbide, TiN-TiCN-TiN coated tungsten carbide, TiC-TiN cermet and M20 tungsten carbide tools at the same cutting conditions. The S-type tool of M20 with large approach angle showed the longest tool life of all tools used in this tests due to preventing the groove wear of the side cutting edge. The wear of the S-type tool with the rake angle of 15$^{\circ}$became smaller than with that of -5$^{\circ}$, but the tool with the nose radius of 0.8mm did not perform much better with increasing the rake angle.

  • PDF

Tool-Wear Characteristics in Turning of STS 304 (STS 304 선삭시의 공구마멸 특성)

  • 이재우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.56-64
    • /
    • 2003
  • The effect of tool geometry on the tool wear in turning the austenitic stainless steel, STS 304 was investigated. The wear of TiN-TiCN-TiC-TiAlN coated tungsten carbide tool was the smallest, showing larger wear in the order of Si-Al-O-N ceramic, TiN coated tungsten carbide, TiN- TiCN- TiN coated tungsten carbide, TiC-TiN cermet and M20 tungsten carbide tools at the same cutting conditions. The S-type tool of M20 with the larger side cutting edge angle showed the smallest tool wear in all tests due to preventing the groove wear of the side cutting edge. The wear of the S-type tool with the rake angle of $15^{\circ}$ became smaller than with that of $-5^{\circ}$, but the tool with the nose radius of 0.8mm did not perform much better with increasing the rake angle.

A Study on Formed Tool to Machine Milli-structure Mold (미세구조물 금형가공을 위한 총형공구에 관한 연구)

  • Lee, Hi-Koan;Kim, Yeun-Sul;Kim, Do-Hyung;Roh, Sang-Heup;Yang, Gyun-Eui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.5-10
    • /
    • 2003
  • This paper presents the formed tool to machine a milli-structure mold. The formed tool is used to machine the geometrical shape of bearing rubber seal for precision machining. The bearing rubber seal has milli-sized complex geometry. Because it is difficult to machine the unique shape exactly by the conventional tool, the formed tool is used in machining die of the bearing seal. In this paper, it is performed to investigate properties of the formed tool; tool wear, cutting force and machined surface roughness. Tool wear increases rapidly with clearance angle Increase. Thus, the dimension accuracy is affected by the clearance angle.

  • PDF

A study on the effect of cutting parameters of micro metal cutting mechanism using finite element method (유한유쇼법을 이용한 미소절삭기구의 절삭인자 규명에 관한 연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.206-215
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting, especially micro metal cutting. This paper introduces some effects, such as constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angle and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool. Under the usual plane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and tool rake angles. In this analysis, cutting speed, cutting depth set to 8m/sec, 0.02mm, respectively. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF

Development of Geometry Design S/W using Analysis on Machining Characterization considering EndMill Geometry (엔드밀 형상에 따른 가공특성 분석을 이용한 형상설계 S/W 개발)

  • 한창규;고성림;유중학;서천석;김경배
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.111-117
    • /
    • 2004
  • The tool geometry parameters and cutting process have complex relationships. Until now, various cutting test were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process. In high speed machining. Using various tools with different geometry, relationships between tool geometry parameter (rake angle, clearance angle, length of cutter) and cutting process (cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining and developed tool geometry design S/W.

  • PDF

Study on Compensation for Shape of Formed Tool for Turning of Bearing Raceway (베어링 궤도 선삭가공용 총형공구의 형상보정에 관한 연구)

  • Moon H.K.;Chung J.H.;Moon S.C.;Joun M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.426-429
    • /
    • 2005
  • In this study, the formed tool is used to machine of bearing raceway and a shape compensation scheme is proposed to compensate for shape of it in turning process. It is introduced the conventional design method of the formed tool; a simple depth compensation method and a drawing compensation method. And it is performed to investigate in detail properties of the formed tool about a tool angle and problems of a turning process of bearing raceway using the formed tool. The applicability of the proposed scheme is examined by comparing the experimental results obtained by a new designed formed tool with those obtained by a conventional tool.

  • PDF