• 제목/요약/키워드: Tomato Instance Tracking Algorithm

검색결과 1건 처리시간 0.015초

딥러닝과 확률모델을 이용한 실시간 토마토 개체 추적 알고리즘 (Real-Time Tomato Instance Tracking Algorithm by using Deep Learning and Probability Model)

  • 고광은;박현지;장인훈
    • 로봇학회논문지
    • /
    • 제16권1호
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, a smart farm technology is drawing attention as an alternative to the decline of farm labor population problems due to the aging society. Especially, there is an increasing demand for automatic harvesting system that can be commercialized in the market. Pre-harvest crop detection is the most important issue for the harvesting robot system in a real-world environment. In this paper, we proposed a real-time tomato instance tracking algorithm by using deep learning and probability models. In general, It is hard to keep track of the same tomato instance between successive frames, because the tomato growing environment is disturbed by the change of lighting condition and a background clutter without a stochastic approach. Therefore, this work suggests that individual tomato object detection for each frame is conducted by YOLOv3 model, and the continuous instance tracking between frames is performed by Kalman filter and probability model. We have verified the performance of the proposed method, an experiment was shown a good result in real-world test data.