• Title/Summary/Keyword: Toluene photodecomposition

Search Result 2, Processing Time 0.015 seconds

Toluene Decompositions over Al-W-incorporated Mesoporous Titanosilicates Photocatalysts

  • Lee, Ye-Ji;Kim, Young-Mi;Jeong, Ha-Rim;Yeo, Min-Kyeong;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.107-113
    • /
    • 2009
  • This study investigated the decomposition activities of toluene on 10 mol% Al-W-incorporated mesoporous titano (15 mol %) silicates. The mesopore sizes observed in the transmission electron microscopy images ranged from 2.0 to 5.0 nm, and the pores were irregular on the addition of 10 mol% Al or W ions, but changed to regular hexagonal forms with the simultaneous additions of Al and W. The X-ray photon spectroscopy results showed a shift of the special peak for Ti2p in Al-incorporated mesoporous titanosilicates to a stronger binding energy compared to those of mesoporous titanosilicates and Al-incorporated mesoporous titanosilicates. Three O1s peaks in the spectra of the Al and W coexisted samples were observed at 530.5 and 531.7, 533, and 533.7eV, which were assigned to $Ti-Os\;in\;TiO_2\;and\;Ti_2O_3,\;Si-O\;in\;SiO_2\;and\;Al-O\;in\;Al_2O_3$, respectively. The toluene molecules desorbed at lower temperatures over W-incorporated mesoporous titanosilicates, and the amounts of toluene desorbed were also small; however, Al-incorporated mesoporous titanosilicates adsorbed much more toluene, particular over $Al_7.5-W_2.5-Ti_15-Si_75$. The photocatalytic decomposition of toluene was more enhanced over $Al_7.5-W_2.5-Ti_15-Si_75$ than over Al- or W-incorporated mesoporous titanosilicates only.

Decomposition of volatile aromatic compounds by photochemical treatment (광화학적 방법을 이용한 휘발성 방향족 화합물의 분해)

  • Kim, Jong Hyang
    • Clean Technology
    • /
    • v.4 no.1
    • /
    • pp.35-44
    • /
    • 1998
  • Photodecomposition behaviors of volatile organic compounds (VOCs ; benzene, toluene, ethylbenzene and xylenes) over UV irradiation and UV irradiation with $TiO_2$ powder catalyst were studied and the extent of degradation were also investigated under various reaction conditions. The reactions were conducted in a quartz annular reactor equipped with a medium pressure mercury lamp. As a result, the extents of degradation were 92% for toluene and ethylbenzene, 83% for benzene, and 82% for xylenes under UV irradiation. And they were 92% for toluene, 82% for xylene and ethylbenzene, and 53% for benzene under UV irradiation with $TiO_2$ powder. Analyses of reacted samples by FID-gas chromatograph with Purge & Trap concentrator and GC-MS indicated that the aromatics formed many intermediates.

  • PDF