• Title/Summary/Keyword: Tohyun mine creek

Search Result 2, Processing Time 0.016 seconds

Environmental Geochemistry and Contamination Assessment of the Tohyun Mine Creek, Korea (토현광산 수계의 환경지구화학적 특성과 오염도 평가)

  • 이찬희;이현구;이종창;전서령
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.471-483
    • /
    • 2001
  • The pH values of the mine and surface water from the Tohyun mine creek were higher compared with those of groundwater, and 2nd round samples in same sites were even alkaline. The stream and mine waters belong to the characteristics of (Ca+Mg)-(SO$_4$) and (Ca+Mg)-(HCO$_3$) types, and groundwaters have to the (Ca+Mg+Na+K)-(HCO$_3$+SO$_4$) type. As the 2nd samples. concentrations of mostly anions are increasing compared with the forder samples. However, the mostly cation concentrations are decreasing. The hydrogeochemistry indicate that water quality is different chemical characteristics and evolution trends. The range of $\delta$D and $\delta$$^{18}$ valutes (relative to SMOW) in the waters are shown in -62.2 to -70.1$\textperthousand$, and -8.1 to -9.4$\textperthousand$. The values are plowed parallel to $\delta$D=8$\delta$$^{18}$ O+ (6$\pm$4). The d values of groundwater show 2.4, which is lower than the surface (5.2) and mine (7.6) waters. Strontium concentra titans range from 0.025 to 11.844 mg/$\ell$ in all kinds of water samples, but the groundwater has the highest contents The $^{87}$ Sr/$^{86}$ Sr ratios (0.7115 to 0.7129) show more lightened to the groundwater. The $\delta$$^{18}$ O value, Ca and Sr contents are decreased with $^{87}$ Sr/$^{86}$ Sr increasing, because it is support to the altitude effects of the sampling sites rather than a water-rock interaction of environmental isotope. Using computer code of WATEQ4F, saturation indices of albite, Quartz, gibssite and gypsum are calculated to be soluble. The calcite and dolomite show super saturation state, however, clay mineral species are plotted boundary between undersaturation and supersaturation. In the Tohyun mine creek, reaction materials with ore wastes arid precipitation have influence upon increasing EC and TDS of the waters independent of pH. The SO$_4$ concentrations in the mine water is 181.845 mg/$\ell$. This is abruptly increase in surface water and then detected 249.727 mg/$\ell$ in the groundwater. As a results of the calculated sulfate mineral solubilities, the sulfate ions became saturation states an above 150 mg/$\ell$ concentrations.

  • PDF

Geochemistry, Secondary Contamination and Heavy Metal Behavior of Soils and Sediments in the Tohyun Mine Creek, Korea (토현광산 수계에 분포하는 토양과 퇴적물의 지구화학적 특성, 이차적 오염 및 중금속의 거동)

  • 이찬희;이현구;윤경무
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.39-53
    • /
    • 2001
  • Environmental pollution of the Tohyun mine creek area was investigated on the basis of geology, mineralogy and geochemistry. In soils and sediments of the mine area, ${Al_2}{O_3}/{Na_2O}$ and ${K_2}O/{Na_2}O$ ratios are partly negative correlation against ${SiO_2}/{Al_2}{O_3}$, respectively. Geochemical characteristics of some trace and rare earth elements such as V/Ni, Ni/Co, La/Ce, Th/Yb, Th/U, La/Th, ${La_N}/{Yb_N}$, La/Sc and Sc/Th are revealed a narrow range and homogeneous compositions may be explained by simple source lithology. These results suggest that sediments source of the host shale around the mine area could be originated by basic to intermediate igneous rocks. Mineral compositions of soil and sediment near the mine area were partly variable mineralogy, which are composed of quartz, mica, feldspar, chlorite, clay minerals and some pyrite. Soils and sediments with highly concentrated heavy minerals, gravity separated mineralogy, are composed of some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, goethite and various kinds of hydroxide minerals on the polished sections. As normalized by bed rock composition, average enrichment indices of major elements in sediments, precipitates, farmland soils and paddy soils are 1.0, 1.7, 0.9 and 0.8, respectively. Maximum concentration of environmental toxic elements in the mine creek are detected with Ag = 186 ppm, As = 17,100 ppm, Bi = ]27 ppm, Cd = 77 ppm, Cu = 12,299 ppm, Pb = 8,897 ppm, Sb = 1,350 ppm, W = 599 ppm and Zn = 12,250 ppm, which are increasing with total FeO increasing, and extremely high concentrations of surface sediments and precipitates near the waste rock dump. These toxic elements (As, Bi, Cd, Cu, Pb, Sb, W and Zn) of the samples, normalizing by host rock concentration, revealed that average enrichment index is 106.0 for sediments, 279.6 for precipitates, 3.5 for farmland soils and 1.6 for paddy soils. However, on the basis of EPA values, enrichment indices of all the samples are 40.7, 121.4, 1.3 and 0.6, respectively.

  • PDF