• Title/Summary/Keyword: Toggle Brace

Search Result 8, Processing Time 0.037 seconds

Performance evaluation of the toggle brace-MR damper system for vibration control (토글 가새-MR감쇠기 시스템의 제진성능평가)

  • Lee, Sang-Hyun;Hwang, Jae-Seung;Min, Kyung-Won;Lee, Myoung-Kyu
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.421-428
    • /
    • 2005
  • In this paper, the performance of a toggle brace-MR damper system is evaluated for the control of the structure excited by earthquake load and the non-linearity of the toggle system is investigated. Considering that the control force of MR damper described by Bingham model is a function of velocity, velocity amplification factor by toggle brace system is calculated and the effect of toggle configuration on the amplification factor is also evaluated. Numerical results show that the control performance can be largely enhanced using toggle brace system especially for the case that the MR damper installed with conventional brace system such as Chevron and diagonal cannot provide enough control force under severe earthquake load.

  • PDF

Seismic Response Control of a Building Structure Using Toggle-Brace System with an MR Damper (MR감쇠기를 장착한 토글가새시스템을 이용한 건축구조물의 지진응답제어)

  • Lee Sang-Hyun;Hwang Jae-Seung;Min Kyung-Won;Lee Myoung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.239-245
    • /
    • 2006
  • In this paper, the performance of a toggle brace-MR damper system is evaluated for the control of the structure excited by earthquake load and the non-linearity of the toggle system is investigated. Considering that the control force of MR damper described by Bingham model is a function of velocity, velocity amplification factor by the toggle brace system is calculated and the effect of toggle configuration on the amplification factor is also evaluated. Numerical results show that the control performance can be largely enhanced using toggle brace system especially for the case that the MR damper installed with conventional brace system such as Chevron and diagonal cannot provide enough control force under severe earthquake load.

Experimental Study on the MR-Toggle Brace System for Vibration Control (지진응답 제어를 위한 MR-토글 가새 시스템의 실험적 연구)

  • Min Kyung-Won;Lee Myoung-Kyu;Kang Sang-Hoon;Lee Sang-Hyun;Hwang Jae-Seung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.644-651
    • /
    • 2005
  • The purpose of this paper is to compare the control effect of toggle brace system having amplifying displacement mechanism with that of conventional brace system when the identical MR damper is applied to each system. The force-displacement and lone-velocity relationships of MR damper are obtained using harmonic load test and the analytical model for MR damper is presented. White noise excitation tests of a single degree of freedom system with MR-toggle brace system and MR-chevron system are conducted and the transfer functions of the systems are compared. Test results show that the control effect of the toggle system is superior to that of the conventional brace system.

  • PDF

Two-level control system of toggle braces having pipe damper and rotational friction damper

  • Ata Abdollahpour;Seyed Mehdi Zahrai
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.739-750
    • /
    • 2023
  • This study examines the two-level behavior of the toggle brace damper within a steel frame having a yielding pipe damper and rotational friction damper. The proposed system has two kinds of fuse for energy dissipation in two stages. In this mechanism, rotational friction damper rather than hinged connection is used in toggle brace system, connected to a pipe damper with a limited gap. In order to create a gap, bolted connection with the slotted hole is used, such that first a specific movement of the rotational friction damper solely is engaged but with an increase in movement, the yielding damper is also involved. The performance of the system is such that at the beginning of loading the rotational friction damper, as the first fuse, absorbs energy and with increasing the input load and further movement of the frame, yielding damper as the second fuse, along with rotational friction damper would dissipate the input energy. The models created by ABAQUS are subjected to cyclic and seismic loading. Considering the results obtained, the flexibility of the hybrid two-level system is more comparable to the conventional toggle brace damper. Moreover, this system sustains longer lateral displacements. The energy dissipation of these two systems is modeled in multi-story frames in SAP2000 software and their performance is analyzed using time-history analysis. According to the results, permanent relocations of the roof in the two-level system, in comparison with toggle brace damper system in 2, 5, and 8-story building frames, in average, decrease by 15, 55, and 37% respectively. This amount in a 5-story building frame under the earthquakes with one-third scale decreases by 64%.

Behavior of Seismic Control system with Double Toggle Brace (이중 토글브레이스를 이용한 변위증폭 제진시스템의 이력특성)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Yang, Won-Jik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.137-138
    • /
    • 2010
  • This paper presents new seismic control system that utilize toggle brace to amplify the displacement of damper. A full scale steel moment frame was constructed for the purpose of testing the energy dissipation system with double toggle brace.

  • PDF

Experiments for the Vibration Control of Steel Frame Structure Using Toggle Brace and Lead Rubber Damper (토글가새와 납-고무 제진장치를 적용한 구조물 진동제어 실험)

  • Park, Jung-Woo;Park, Jin-Young;Lee, Wan-Ha;Kim, Ki-Man;Park, Kun-Nok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.171-176
    • /
    • 2011
  • The purposes of the research were to evaluate system performance and response of building structure under external load for full scale modal-testing-tower applied toggle bracing and lead rubber damper(LRD). The dynamic properties of the structure were measured before and after installing damper under harmonic excitation using the AMD and the results were compared. The harmonic excitation condition is to increase 0.01Hz sine sweep signal from 0.49Hz to 0.63Hz. As a result of measuring resonant frequency, before installing damper is 0.55Hz and after installing damper is 0.62Hz. The experimental results after installing damper were also distinguished from simulation results and the main cause of this results is temperature dependency property of rubber material.

  • PDF

Seismic Behavior of Reinforced Concrete Moment Frames Retrofitted by Toggle Bracing System with High Density Friction Damper (토글 가새-고집적 마찰댐퍼를 설치한 철근콘크리트 모멘트 골조의 성능 평가)

  • Han, Sang Whan;Kim, Ji Yeong;Moon, Ki Hoon;Lee, Chang Seok;Kim, Hyung Joon;Lee, Kang Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.133-140
    • /
    • 2014
  • The friction damper can be used for improving the seismic resistance of existing buildings. The damper is often installed in bracing members. The energy dissipation capacity of the damping systems depends on the type of the structure, the configuration of the bracing members, and the property of dampers. In Korea, there are numerous low- to mid-rise reinforced concrete moment frames that were constructed considering only gravity loads. Those frames may be vulnerable for future earthquakes. To resolve the problem, this study developed a toggle bracing system with a high density friction damper. To investigate the improvement of reinforced concrete frames after retrofit using the developed damped system, experimental tests were conducted on frame specimens with and without the damped system. The results showed that the maximum strength, initial stiffness and energy dissipation capacity of the framed with the damped system were much larger than those of the frame without the damped system.