• Title/Summary/Keyword: Toe-grinding

Search Result 13, Processing Time 0.022 seconds

Effect of post treatment on the fatigue strength of welded joint (용접부 피로강도에 미치는 후처리의 영향)

  • 윤중근;김현수;황주환;박동환
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.240-242
    • /
    • 2004
  • Effect of post treatment on the fatigue strength of a box weldment was investigated in order to improve fatigue life of the weldment. The post treatment applied were the smooth grinding of weld bead, weld toe grinding and hammer peening at the weld toe. The fatigue strength of the weldment after post treatment clearly increased, compared with that of the weldment in as-welded condition. After smooth grinding of weld bead, fatigue crack initiated at the root of the weldment, while fatigue crack initiated at the weld toe for the other methods.

  • PDF

A Study on the Fatigue Strength Improvement using Weld Toe Burr Grinding (용접토우부의 그라인딩에 의한 피로강도 증대효과에 대한 연구)

  • Kang, Sung-Won;Kim, Myung-Hyun;Choi, Jae-Young;Kim, Wha-Soo;Paik, Young-Min
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.42-47
    • /
    • 2006
  • While it is known that the weld toe grinding method may give 3.4 times of fatigue strength improvement, this improvement may significantly vary according to weld bead shapes and loading modes. Although tremendous interest have been given in improving fatigue strength improvement for ship structures, quantitative results are yet in need. In this context, a series of fatigue tests is carried out for a type of test specimen that are typically found in ship structures. Weld burr grinding is carried out using a electric grinder in order to remove surface defects and improve the weld bead profile. The test results are compared with the same type of test specimen without applying the fatigue improvement technique in order to obtain a quantitative measure of the fatigue strength improvement. On the other hand, both hot spot stress and structural stress methods are employed to compare the effectiveness of the two methods in evaluating the fatigue strength improvement of welded structures.

A Study on the Fatigue Strength Improvement of the Fillet Welded Connections with respect to Post-Weld Treatment (용접 후처리에 의한 필렛용접부의 피로강도 향상에 관한 연구)

  • Lee, Seung Yong;Kyung, Kab Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.665-672
    • /
    • 2008
  • In the study herein, the fatigue test was conducted on the fillet welds of the load carrying cruciform joint, which is frequently used in the steel structures such as bridges, ships, etc. In addition, the fatigue strength was analyzed with respect to the different post-weld treatment. The treatment methods used include Toe Grinding, TIG Dressing, and Weld Profiling. The fatigue test was under constant amplitude with repeated load for these test specimens. In the load carrying full penetration fillet welded joints, regardless the conduction of the post-weld treatment or not, they all secured the fatigue strength of category "F", which exceeds the fatigue design specifications of BS Code. In the comparison of the fatigue strength upon the post-weld treatment, the fatigue strength tends to increase according to the order: Toe Grinding, TIG Dressing, and Weld Profiling.

Prediction of the fatigue life of a box weldment with residual stress (잔류응력을 고려한 box 용접부의 피로수명 예측)

  • 김현수;윤중근;김하근;박동환
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.252-254
    • /
    • 2004
  • Fatigue life a box weldment was predicted with the stress concentration and residual stress using the equation reported. In order to change the stress concentration and residual stress of the box weldment, Post treatments such as smooth grinding of weld bead, weld toe grinding and hammer peening were applied. The fatigue life of the weldment after post treatment clearly increased, which is attributed to the reduction of stress concentration and/or introduction of compressive residual stress at the weld toe. The predicted fatigue life was a relatively good agreement with the experiment for a long fatigue life, while it was underestimated for a short fatigue life.

  • PDF

A Study on the Fatigue Life of Large-Scale Tubular K-joints (대형 Tubular K-Joint의 피로수명에 관한 연구)

  • Im, Sung-Woo;Chang, In-Hwa
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.58-64
    • /
    • 2008
  • Large-scale tests of welded tubular K-joint sunder balanced in-plane bending braces were carried out to observe the fatigue behavior of the API 2W Gr.60 steel plate produced by POSCO. Toe grinding and weld profiling were used to improve the fatigue life of a tubular K-joint. The effects of the steel grade and chord wall thickness on the fatigue life were also investigated. The present results were compared with the UK DEn design curve.

Effects of post treatment on the fatigue strength of weldment (용접부 강도특성 미치는 후처리 영향)

  • Kim Hyeon Su;Park Yun Gi;Yun Jung Geun
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.246-248
    • /
    • 2004
  • Effects of the post treatment on the fatigue strength of a bead-on-plate weldment were investigated in order to improve fatigue strength of the weldment. The post treatment applied were the grinding of weld toe and hammer peening at the weld toe. The fatigue strength of the weldment after post treatment increases. It is attributed to the decrease of the residual stress and the maximum stress at the weld toe by the post treatments. Based on the result, the principal factor controlling the fatigue strength of the weldment was identified as the toe shape of the bead-on-plate weldment.

  • PDF

Effect of Weld Improvement on the Corroded Fatigue Life of Welded Structures (용접구조물의 부식피로수명에 미치는 용접부 개선처리 효과)

  • Im, Sung-Woo;Chang, In-Hwa;Kim, Sang-Shik;Song, Ha-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.50-57
    • /
    • 2008
  • The effect of weld improvement on the corroded fatigue life of welded structures was investigated. Toe grinding, TIG dressing and weld profiling were used as the geometric improvement methods. Fatigue tests under the corroded condition in artificial seawater were carried out to investigate the corrosion fatigue behavior of API 2W Gr.50T steel plate produced by POSCO. The test results in weld improved conditions were compared with those in as-welded condition. The test results were also compared with the design curves in UK DEn Class F. Corroded fatigue life of weld improved specimens was longer than that of as-welded specimen. Especially, the corroded fatigue life exceeded the mean SN curve in air of UK DEn Class F.