• Title/Summary/Keyword: Toe

Search Result 1,124, Processing Time 0.025 seconds

Comparison of Sesamoid Bone Position and Hallux Valgus Angle in Weight Bearing Conditions between Subjects with and without Hallux Valgus

  • Kim, Moon-Hwan;Jeon, In-Cheol;Hwang, Ui-Jae;Kim, Young
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.6
    • /
    • pp.381-384
    • /
    • 2016
  • Purpose: Previous studies reported changes in the first metatarsophalangeal (MTP) joint angle in relation with and without weight bearing, but it is unclear whether sesamoid bone of the great toe changes in weight bearing conditions particularly in subjects with hallux valgus (HV). To investigate how weight bearing conditions can affect the position of the medial sesamoid bone (MSB), first MTP joint angle, and second intermetatarsal angle (IMA) in the recruited subjects. Methods: Subjects were recruited 24 with HV and 21 without HV in study. X-rays were taken in the weight bearing and non-weight bearing conditions. The distance of the MSB, first MTP joint angle, and second IMA were measured from the radiographs. Data were analyzed by paired and Independent t-test. The statistical significance level was p<0.05. Results: In both groups, the first MTP joint angles and the distance of the MSB were significantly smaller, while the second IMA was significantly greater in the weight bearing condition. The difference in the distance of the MSB between the two postures was significantly greater in the group with HV. Conclusion: Weight bearing can affect the first MTP joint angle, second IMA, and position of the MSB; the change in the position of the MSB in weight bearing was greater in the group with hallux valgus. The difference in these variables between weight bearing and non-weight bearing conditions may be considered when measuring HV.

Fatigue performance and life prediction methods research on steel tube-welded hollow spherical joint

  • Guo, Qi;Xing, Ying;Lei, Honggang;Jiao, Jingfeng;Chen, Qingwei
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.75-86
    • /
    • 2020
  • The grid structures with welded hollow spherical joint (WHSJ) have gained increasing popularity for use in industrial buildings with suspended cranes, and usually welded with steel tube (ST). The fatigue performance of steel tube-welded hollow spherical joint (ST-WHSJ) is however not yet well characterized, and there is little research on fatigue life prediction methods of ST-WHSJ. In this study, based on previous fatigue tests, three series of specimen fatigue data with different design parameters and stress ratios were compared, and two fatigue failure modes were revealed: failure at the weld toe of the ST and the WHSJ respectively. Then, S-N curves of nominal stress were uniformed. Furthermore, a finite element model (FEM) was validated by static test, and was introduced to assess fatigue behavior with the hot spot stress method (HSSM) and the effective notch stress method (ENSM). Both methods could provide conservative predictions, and these two methods had similar results. However, ENSM, especially when using von Mises stress, had a better fit for the series with a non- positive stress ratio. After including the welding residual stress and mean stress, analyses with the local stress method (LSM) and the critical distance method (CDM, including point method and line method) were carried out. It could be seen that the point method of CDM led to more accurate predictions than LSM, and was recommended for series with positive stress ratios.

Experimental and numerical investigation on in-plane behaviour of hollow concrete block masonry panels

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Iyer, Nagesh R.;Lakshmanan, N.;Bhagavan, N.G.
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • This paper presents the details of studies conducted on hollow concrete block masonry (HCBM) units and wall panels. This study includes, compressive strength of unit block, ungrouted and grouted HCB prisms, flexural strength evaluation, testing of HCBM panels with and without opening. Non-linear finite element (FE) analysis of HCBM panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and then lateral load is applied in incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response reduction factors have been evaluated based on experimental results. From the study, it is observed that fully grouted and partially reinforced HCBM panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved towards the compression toe of the wall. The force reduction factor of a wall panel with opening is much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by non-linear FE analysis are found to be in good agreement with the corresponding experimental values. The influence of mortar joint has been included in the stress-strain behaviour as a monolith with HCBM and not considered separately. The derived response reduction factors will be useful for the design of reinforced HCBM wall panels subjected to lateral forces generated due to earthquakes.

Nitrogen Dynamics in Soil Amended with Different Rate of Nitrogen Fertilizer

  • Kim, Sung Un;Choi, Eun-Jung;Jeong, Hyun-Cheol;Lee, Jong-Sik;Lee, Hyun Ho;Park, Hye Jin;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.574-587
    • /
    • 2017
  • Excessive application of nitrogen (N) fertilizer to support switchgrass growth for bioenergy production may cause adverse environmental effects. The objective of this study was to determine optimum N application rate to increase biomass yield of switchgrass and to reduce adverse environmental effects related to N. Switchgrass was planted in May 2008 and biomass yield, N uses of switchgrass, nitrate ($NO_3$) leaching, and nitrous oxide ($N_2O$) emission were evaluated from 2010 through 2011. Total N removal significantly increased with N rate despite the fact that yield did not increased with above $56kg\;N\;ha^{-1}$ of N rate. Apparent nitrogen recoveries were 4.81 and 5.48% at 56 and $112kg\;N\;ha^{-1}$ of N rate, respectively. Nitrogen use efficiency decreased into half with increasing N rate from 56 to $112kg\;N\;ha^{-1}$. Nitrate leaching and $N_2O$ emission were related to N use of switchgrass. There was no significant difference of cumulative $NO_3$ leaching between 0 and $56kg\;N\;ha^{-1}$ but, it significantly increased at $112kg\;N\;ha^{-1}$. There was no significant difference of cumulative $N_2O$ emission among N rates in crest, but it significantly increased at $112kg\;N\;ha^{-1}$ in toe. Excessive N application rate (above $56kg\;N\;ha^{-1}$) beyond plant requirement could accelerate $NO_3$ leaching and $N_2O$ emission in switchgrass field. Overall, $56kg\;N\;ha^{-1}$ might be optimum N application rate in reducing economic waste on N fertilizer and adverse environmental impacts.

Nonlinear modeling of roof-to-wall connections in a gable-roof structure under uplift wind loads

  • Enajar, Adnan F.;Jacklin, Ryan B.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • v.28 no.3
    • /
    • pp.181-190
    • /
    • 2019
  • Light-frame wood structures have the ability to carry gravity loads. However, their performance during severe wind storms has indicated weakness with respect to resisting uplift wind loads exerted on the roofs of residential houses. A common failure mode observed during almost all main hurricane events initiates at the roof-to-wall connections (RTWCs). The toe-nail connections typically used at these locations are weak with regard to resisting uplift loading. This issue has been investigated at the Insurance Research Lab for Better Homes, where full-scale testing was conducted of a house under appropriate simulated uplift wind loads. This paper describes the detailed and sophisticated numerical simulation performed for this full-scale test, following which the numerical predictions were compared with the experimental results. In the numerical model, the nonlinear behavior is concentrated at the RTWCs, which is simulated with the use of a multi-linear plastic element. The analysis was conducted on four sets of uplift loads applied during the physical testing: 30 m/sincreased by 5 m/sincrements to 45 m/s. At this level of uplift loading, the connections exhibited inelastic behavior. A comparison with the experimental results revealed the ability of the sophisticated numerical model to predict the nonlinear response of the roof under wind uplift loads that vary both in time and space. A further component of the study was an evaluation of the load sharing among the trusses under realistic, uniform, and code pressures. Both the numerical model and the tributary area method were used for the load-sharing calculations.

Comparison of Muscle Activity in Proximal Muscle of Lower Extremities during Lunge according to the Anterior-posterior Distance of Foot Position (런지 동작 시 발 위치의 앞뒤 간격에 따른 하지 근위부 근육의 근 활성도 비교)

  • Park, Hoon-Young;Kim, Nan-Hyang;Cha, Yong-Jun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.4
    • /
    • pp.131-138
    • /
    • 2018
  • PURPOSE: This study was conducted to compare the muscle activity of the proximal muscles of the lower limb according to the distance between the front and rear foot during lunge and to determine the most effective foot position for activation of the proximal muscle in the limb. METHODS: A total of 49 young adults were enrolled in this study. All subjects performed lunge by positioning the big toe of the back foot and the heel of the front foot at intervals of 40%, 60%, and 80% of the subject's own leg length. Muscle activity of the vastus medialis oblique, rectus femoris (RF), vastus lateralis oblique (VLO), gluteus medius, biceps femoris, and semitendinosus (ST) was then measured during three intervals of lunge operation. Each operation was measured three times for 10 seconds each, after which the average value was calculated and analyzed. RESULTS: There were significant differences in muscle activities of RF, VLO, and ST among the three intervals of the foot (p<.05). Post hoc, comparisons revealed lunge at 40% intervals resulted in higher RF and VLO activity than at 60% and 80% intervals (p<.05). In the semitendinosus muscle, 80% leg length intervals showed higher muscle activity than 40% (p<.05). CONCLUSION: Strengthening of the proximal muscles of the lower extremities during lunge exercise is considered to be most effective when placing the fore- and rear foot at intervals corresponding to 40% of the leg length.

Assessment of Korea's GHG Reduction Targets through Comparative Analysis of OECD Countries' Nationally Determined Contributions (NDCs) (OECD 국가의 온실가스 감축공약(NDC)의 비교 분석을 통한 우리나라 온실가스 감축 목표 평가)

  • Lee, Manhee;Park, Sun-Kyoung
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.313-327
    • /
    • 2017
  • Korea has introduced Korea Emissions In 2015, the United Nations Conference on Climate Change (COP21) was held in Paris. The Paris Agreement indicates that all nations are in charge of mitigating climate change. Prior to COP21, 197 Parties submitted the Nationally Determined Contributions (NDCs), which are greenhouse gas reduction targets. On June 30, 2015, Korea also submitted an NDC target of 37% reduction compared to BAU in 2030. However, Korea's NDC was evaluated as "Inadequate" by the Climate Action Tracker (CAT). In addition, the domestic environmental group expressed a negative opinion as well. In view of this situation, it is necessary to conduct an objective assessment of quantitative analysis of NDC goals in Korea. The goal of this study is to evaluate NDC of Korea by comparing with those of OECD member countries. For comparative analysis, data such as population, GDP, primary energy supply affecting GHG emissions were obtained from the OECD homepage. The results indicate that emission reduction goal of 37% of Korea was $4^{th}$ highest goal among OECD member countries. If Korea achieves the emission reduction goal, the greenhouse gas emissions per capita in 2030 are $10^{th}$among OECD member countries. The greenhouse gas emissions per GDP are $13^{th}$, and emissions per TOE are $9^{th}$ among OECD member countries. The results show that greenhouse gas intensity of Korea is relatively high among OECD member countries. Therefore, it is needed to continuously endeavor to reduce greenhouse gas emissions to mitigate the global climate change. This study can be further used as a fundamental document to establish the future greenhouse reduction policy in Korea.

Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability

  • Xing, Haofeng;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.353-362
    • /
    • 2019
  • Soil-rock mixture (S-RM) is an inhomogeneous geomaterial that is widely encountered in nature. The mechanical and physical properties of S-RM are important factors contributing towards different deformation characteristics and unstable modes of the talus slope. In this paper, the equivalent substitution method was employed for the preparation of S-RM test samples, and large-scale triaxial laboratory tests were conducted to investigate their mechanical parameters by varying the water content and confining pressure. Additionally, a simplified geological model based on the finite element method was established to compare the stability of talus slopes with different strength parameters and in different excavation and support processes. The results showed that the S-RM samples exhibit slight strain softening and strain hardening under low and high water content, respectively. The water content of S-RM also had an effect on decreasing strength parameters, with the decrease in magnitude of the cohesive force and internal friction angle being mainly influenced by the low and high water content, respectively. The stability of talus slope decreased with a decrease in the cohesion force and internal friction angle, thereby creating a new shallow slip surface. Since the excavation of toe of the slope for road construction can easily cause a landslide, anti-slide piles can be used to effectively improve the slope stability, especially for shallow excavations. But the efficacy of anti-slide piles gradually decreases with increasing water content. This paper can act as a reference for the selection of strength parameters of S-RM and provide an analysis of the instability of the talus slope.

Effect of Modified High-heels on Metatarsal Stress in Female Workers

  • Kim, Kwantae;Peng, Hsien-Te
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.3
    • /
    • pp.197-204
    • /
    • 2019
  • Objective: The purpose of this study was to identify the effect of high-heels (HH) modification on metatarsal stress in female workers. Method: Seven females who work in clothing stores ($heights=160.4{\pm}3.9cm$; $weights=47.4{\pm}4.1kg$; $age=31.3{\pm}11.1yrs$; $HH\;wear\;career=8{\pm}6.5yrs$) wore two types of HH (original and modified). The modified HH had been grooved with 1.5 cm radius and 0.2 cm depth around the first metatarsal area inside of the shoes using the modified shoe-last. Participants were asked to walk for 15 minutes on a treadmill and to stand for 10 minutes with original and modified HH, respectively. Kinetics data were collected by the F-scan in-shoe system. After each test, participants were asked to rate their perceived exertion using the Borg's 15-grade RPE scale and interviewed about their feeling of HH. Nonparametric Wilcoxon signed-rank test and effect size (Cohen's d) were used to determine the difference of the variables of interest between the original and modified HH. Results: In the present study, modified HH of the peak contact pressure of 1st metatarsal (PCP) left, PCP right, pressure time integral (PTI) left, peak pressure gradient (PPG) left during standing and PPG right during walking are greater than original HH. And even it didn't show statistically significant, the average in all pressure values of modified HH showed bigger than original HH. It surmised to be related to awkward with modified HH. Even though they said to feel the comfortable cause of big space inside of HH in the interview, they seemed to be not enough time to adapt with new HH. So their walking and standing postures were unstable. Conclusion: Modified the fore-medial part of HH can reduce the stress in the first metatarsal head and big toe area during standing and walking.

Overtopping Model Experiments and 3-D Seepage Characteristics of the Embankment of Deteriorated Homogeneous Reservoirs (노후화된 균일형 저수지 제체의 월류모형실험과 3차원 침투특성)

  • Lee, Young Hak;Lee, Tae Ho;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.13-23
    • /
    • 2019
  • In this study, an overtopping model experiments and three dimensional seepage characteristics at the deteriorated homogeneous reservoirs were performed to investigate the behavior of failure for embankment and spillway transitional zone due to overtopping. The failure pattern, pore water pressure, earth pressure and settlement by overtopping were compared and analyzed. The pattern of the failure by overtopping was gradually enlarged towards reservoirs crest from the spillway transition zone at initial stage. In the rapid stage and peak stage, the width and depth of failure gradually increased, and the pattern of the failure appeared irregular and several direction of the erosion. In the early stage, the pore water pressure at spillway transitional zone was more affected as its variation and failure width increased. In the peak stage, the pore water pressure was significantly increased in all locations due to the influence of seepage. The earth pressure increased gradually according to overtopping stage. The pore pressure by the numerical analysis was larger than the experimental value, and the analysis was more likely to increase steadily without any apparent variation. The horizontal and vertical displacements were the largest at the toe of slope and at the top of the dam crest, respectively. The results of this displacement distribution can be applied as a basis for determining the position of reinforcement at the downstream slope and the crest. The collapse in the overtopping stage began with erosion of the most vulnerable parts of the dam crest, and the embankment was completely collapsed as the overtopping stage increased.