• Title/Summary/Keyword: Tobacco regulation

Search Result 52, Processing Time 0.027 seconds

Regulation of the Korean Radish Cationic Peroxidase Promoter by Phytohormones and Other Reagents

  • Lee, Dong-Ju;Kim, Sung-Soo;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.51-59
    • /
    • 1999
  • The Korean radish cationic peroxidase (KRCP) promoter, comprising nucleotides -471 to +704 relative to the transcriptional initiation site, was fused to the GUS gene and transformed to tobacco BY-2 cells. We examined how auxin (2,4-dichlorophenoxyacetic acid, 2,4-D), cytokinin (6-benzylaminopurine, BAP), gibberellic acid ($GA_3$), abscisic acid (ABA), methyl jasmonate (MeJA), and phosphatidic acid (PA) affect the GUS expression in the presence or absence of 2,4-D in a modified LS medium. Exogenous 2,4-D or BAP greatly decreased the GUS expression regulated by the KRCP promoter in a modified LS medium containing 0.2 mg/l 2,4-D. $GA_3$ increased the GUS expression and ABA completely reduced the inductive effect of $GA_3$. The GUS expression was also increased dose-dependently by plant defense regulators, MeJA and PA. In contrast to the above results, auxin deprivation from the modified LS medium increased the GUS expression after treatment with exogenous 2,4-D whereas BAP still greatly decreased the GUS expression dose-dependently. $GA_3$ or MeJA slightly decreased the GUS expression. The data suggest that auxin deprivation changes the sensitivity of the suspension cells to exogenous chemicals and that the regulation of the KRCP promoter by 2,4-D, $GA_3$, and MeJA is dependent on auxin, whereas the regulation by BAP is not. This study will be valuable for understanding the function and expression mode of the Korean radish cationic peroxidase in Korean radish.

  • PDF

Glucocorticoid Receptor Induced Down Regulation of Metalloproteinase-9 (bfMP-9) by Ginseng Components, Panaxadiol (PD) and Panaxatriol (PT), Contributes to Inhibition of the Invasive Capacity of HTl080 Human Fibrosarcoma Cells

  • Park, Moon-Taek;Cha, Hee-Jae;Jeong, Joo-Won;Kim, Shin-Il;Kim, Kyu-Won
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.224-230
    • /
    • 1998
  • This study showed the anti-invasive activity of ginseng components, panaxadiol (PD) and panamatrlol (PT) on the highly metastatic HT1080 human flbrosarcoma cell line. PD and PT reduced tumor cell invasion through a reconstitute basement membrane in the transwell chamber. A significant down regulation of MMP-9 by PD and PT was detected by northern blot analysis. However, MMP-2 was constantly expressed. Quantitative gelatin based zymography confirmed a marked reduced expression of MMP-9 but not MMP-2 in the treatment of PD and PT. Since the chemical structures of PD and PT are very similar to that of dexamethasone, a synthetic glucocorticoid, it was investigated whether PD and PT act through GR. Western blot analysis and immunocytochemistry showed that PD and PT increased the GR fraction in the nucleus. These results suggest that ursolic acid may induce repression of MMP-9 by stimulating the nuclear translocation of GR and hence inhibiting the activity of AP-1 to TPA-responsible element of MMP-9 promoter region. In conclusion, we suggest that CR-induced down-regulation of MMP-9 by PD and PT contributes to reduce the invasive capacity of HT 1080 cells.

  • PDF

Biological roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in solanaceous crops

  • Tweneboah, Solomon;Oh, Sang-Keun
    • Journal of Plant Biotechnology
    • /
    • v.44 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Evolutionary studies conducted on NAC (NAM, ATAF1&2, and CUC2) genes for all major groups of land plants, indicate the presence of the NAC subfamilies, even in the early land plants. The varied roles played by NAC proteins in plant growth and development range from the formation of shoot apical meristem, floral organ development, reproduction, lateral shoot development, and defense responses to biotic and abiotic stresses. Considering the value and importance of solanaceous crops, the study of NAC proteins in these plants needs to be intensified. This will help to identify and functionally characterize their promoters, which will subsequently aid in engineering plants with improved performance under stressful conditions. In this review, the functionally characterized NAC transcription factors specific to tomato, potato, tobacco, chili pepper and eggplant (aubergine) are summarized, clearly indicating their biological functions in the defense mechanism of the plants, against biotic and abiotic stresses.

Cloning And Characterization of Pathogen-Inducible EREBP-Like Transcription Factor(CaNR19) From Hot Pepper (Capsicum annuum L.)

  • Yi, So-Young;Kim, Jee-Hyub;Yu, Seung-Hun;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.77.2-78
    • /
    • 2003
  • An EREBP/AP2-type transcription factor (CaPFl) was isolated by DDRT-PCR following inoculation of soybean pustule pathogen Xanthomonas axonopodis pv. glycines Bra which induces HR on pepper leaves. Genomic Southern blot analysis revealed that the CaPFl gene is present as a single copy within the hot pepper genome. The deduced amino acid sequence of CaPFl has two potential nuclear localization signals, a possible acidic activation domain, and an EREBP/AP2 motif that could bind to a conserved cis- element present in promoter region of many stress-induced genes. The mRNA level of CaPFl was induced by both biotic and abiotic stresses. We observed higher-level transcripts in resistance-induced pepper tissues than diseased tissues. Expression of CaPFl is also induced upon various abiotic stresses including ethephon, MeJA, cold stress, drought stress and salt stress treatments. To study the role of CPFI in plant, transgenic Arabidopsis and tobacco plants which express higher level of pepper CaPFl were generated. Global gene expression analysis of transgenic Arabidopsis by cDNA microarray indicated that expression of CaPFl in transgenic plants affect the expression of quite a few GCC box and DRE/CRT box-containing genes. Furthermore, the transgenic Arabidopsis and tobacco plant, expressing CaPFl showed tolerance against freezing temperature and enhanced resistance to Pseudomonas syrnigae pv. tabaci. Taken together, these results indicated that CaPFl is a novel EREBP/AP2 transcription factor in hot pepper plant and it may has a significant role(s) in regulation of biotic and abiotic stresses in plant.

  • PDF

Exploring Recommendations for an Effective Smoking Prevention Program for Indonesian Adolescents

  • Tahlil, Teuku;Coveney, John;Woodman, Richard J.;Ward, Paul R.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.865-871
    • /
    • 2013
  • Background: The present qualitative study assessed the need, acceptability and appropriateness for implementing effective and culturally appropriate smoking prevention programs for adolescents in schools in Indonesia. Methods: Snowball sampling was used to recruit participants. The study sample comprised a mixture of staff in the education department, junior high school teachers and individuals who had taught junior high school students in Aceh Province, Indonesia. Data were collected through one hour in-depth face to face or telephone interviews and analyzed using a descriptive content analysis procedure. Results: School teachers and policy makers in education firmly supported the implementation of a school-based smoking prevention program in Aceh. An appropriate intervention for smoking prevention program in schools in Aceh should involve both health and Islamic based approaches, and be provided by teachers and external providers. Potential barriers to the program included smoker teachers and parents, time constraints of students and/or teachers, lack of teachers' ability, increase in students' load, the availability of tobacco advertising and sales, and lack of tobacco regulation and support from community and related departments. To increase program effectiveness, involvement of and coordination with other relevant parties are needed. Conclusions: The important stakeholders in Indonesian childhood education agreed that school-based smoking prevention program would be appropriate for junior high school students. An appropriate intervention for smoking prevention program for adolescents in schools in Indonesia should be appropriate to participants' background and involve all relevant parties.

Molecular Characterization of the Perilla frutescens Limonene Gene (PFLS) by Agroinfiltration into Nicotiana benthamiana (들깨 Limonene 유전자의 담배식물(Nicotiana benthamiana)내 Agroinfiltration에 의한 분자적 특성)

  • Seong, Eun-Soo;Seo, Eun-Won;Kim, Hyoung-Seok;Heo, Kweon;Lee, Ju-Kyung;Chung, Ill-Min;Ghimire, Bimal Kumar;Kim, Myong-Jo;Lim, Jung-Dae;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • The full-length cDNA encoding Perilla frutescens limonene synthase (PFLS) (603 amino acids, GenBank accession no. D49368) was cloned. To elucidate the role of PFLS in gene regulation, we transiently transformed full-length PFLS into tobacco plants. PFLS mRNA was first detected in the intact leaves of the plants at 6 h, and the LS transcript level increased after 12 h in leaves treated with oxidative stress-related chemicals. The transient overexpression of PFLS resulted in increased transcription of NbPR1 and NbSIP in Nicotiana benthamiana leaves. Thus, our result confirmed that the infiltration of PFLS gene act as a transcriptional regulator of NbPR1 or NbSIP genes in the tobacco.

Amino Acid Biosynthesis and Gene Regulation in Seed (종자내 아미노산 합성 조절 유전자에 관한 연구)

  • ;;;;;Fumio Takaiwa
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.07a
    • /
    • pp.61-74
    • /
    • 1996
  • Human and monogastric animals can not synthesize 10 out of the 20 amino asids and therefor need to obtain these from their diet. The plant seed is a major source of dietary protein. It is particular important in their study to increase nutritional quality of the seed storage proteins. The low contents of lysine, asparagine and threonenein various cereal seeds and of cystein and methionine. In legume seeds is due to the low proportions of these amino acids in the major storage proteins, we have tried to apply the three strategies; (1) mutagenesis and selection of specific amino acid analogue resistance, (2) cloning and expression study of lysine biosynthesis related gene, (3) transfomation of lysine rich soybean glycinin gene. The 5-methyltryptophan (5MT) resistant cell lines, SAR1, SAR2 and SAR3 were selected from anther derived callus of rice (Oryza sativa L. "Sasanishiki"). Among these selected cell lines, two (SAR1 and SAR3) were able to grow stably at 200 mg/L of 5MT. Analysis of the freed amino acids in callus shows that 5MT resistant cells (SAR3) accumulated free tryptophan at least up to 50 times higher than those that of the higher than of SAS. These results indicated that the 5MT resistant cell lines are useful in studies of amino acid biosynthesis. Tr75, a rice (Oryza sativa L., var. Sasanishiki) mutant resistant to 5MT was segregated from the progenies of its initial mutant line, TR1. The 5MT resistant of TR75 was inherited in the M8 generations as a single dominant nuclear gene. The content of free amino acids in the TR75 homozygous seeds increased approximately 1.5 to 2.0 fold compared to wild-type seeds. Especially, the contents of tryptophan, phenylalanine and aspartic acid were 5.0, 5.3 and 2.7 times higher than those of wild-type seeds, respectively. The content of lysine is significantly low in rice. The lysine is synthesized by a complex pathway that is predominantly regulated by feedback inhibition of several enzymes including asparginase, aspatate kinase, dihydrodipicolinat synthase, etc. For understanding the regulation mechanism of lysine synthesis in rice, we try to clone the lysine biosynthetic metabolism related gene, DHPS and asparaginase, from rice. We have isolated a rice DHPS genomic clone which contains an ORF of 1044 nucleotides (347 amino acids, Mr. 38, 381 daltons), an intron of 587 nucleotides and 5'and 3'-flanking regions by screening of rice genomic DNA library. Deduced amino acid sequence of mature peptide domain of GDHPS clone is highly conserved in monocot and dicot plants whereas that of transit peptide domain is extremely different depending on plant specie. Southern blot analysis indicated that GDHPS is located two copy gene in rice genome. The transcripts of a rice GDHPS were expressed in leaves and roots but not detected in callus tissues. The transcription level of GDHPS is much higher in leaves indicating enormous chloroplast development than roots. Genomic DNA clones for asparaginase genes were screened from the rice genomic library by using plaque hybridization technique. Twelve different genomic clones were isolated from first and second screening, and 8 of 12 clones were analyzed by restriction patterns and identified by Southern Blotting, Restriction enzyme digestion patterns and Southern blot analysis of 8 clones show the different pattern for asparaginase gene. Genomic Southern blot analysis from rice were done. It is estimated that rice has at least 2-3 copy of asparaginase gene. One of 8 positive clones was subcloned into the pBluescript SK(+) vector, and was constructed the physical map. For transformation of lysine rich storage protein into tobacco, soybean glycinin genes are transformed into tobacco. To examine whether glycinin could be stably accumulated in endosperm tissue, the glycinin cDNA was transcriptionally fused to an endosperm-specific promotor of the rice storage protein glutelin gene and then introduced into tobacco genomic via Agrobacterium-mediated transformation. Consequently the glycinin gene was expressed in a seed-and developmentally-specific manner in transgenic tobacco seeds. Glycinin were targeted to vacuole-derived protein bodies in the endosperm tissue and highly accumulated in the matrix region of many transgenic plant (1-4% of total seed proteins). Synthesized glycinin was processed into mature form, and assembled into a hexamer in a similar manner as the glycinin in soybean seed. Modified glycinin, in which 4 contiguous methionine residues were inserted at the variable regions corresponding to the C - teminal regions of the acidic and basic polypeptides, were also found to be accumulated similarly as in the normal glycinin. There was no apparent difference in the expression level, processing and targeting to protein bodies, or accumulation level between normal and modified glycinin. glycinin.

  • PDF

Health Education Curriculum Constructs and Dimensional Properties for Korean Middle School Students in Multidimensional Scaling Analysis (다차원척도법을 이용한 중학교 보건교육 교과영역 구축 및 속성 분석)

  • Park, Kyoung-Ok
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.7
    • /
    • pp.1-17
    • /
    • 2006
  • Background: School is a primary health education setting for adolescents and the continuous support should be provided to renew school health education curriculum correspondent to cultural changes in Korean society. Objectives: This study was conducted to identify the principals and teachers' health education needs for their students and to analyze their conceptual map for health education curriculum at school. Methods: The sample size of the preliminary study was 321 of the teachers in elementary, middle, and high school, and that of the main study was 355 middle school principals and teachers over the country. The self-administered mailing survey was conducted to collect the available health education topics in the preliminary study, to identify the factor structure of the health education topics and to analyze the conceptual properties on health education with exploratory factor analysis and multidimensional scaling analysis in SPSS 12.0. Results: A total of 21 health education topics were collected from the preliminary survey and 31 topics were, comprehensively, generated for the main survey. In exploratory factor analysis, seven factors were generated in 1.0 or greater Eigen value standard. The seven factors were 'life health promotion,' 'disease prevention and drug control,' 'bulling and aggression prevention,' 'injury and sexual harassment prevention,' human-efficacy and regulation,' 'health protection for adolescence,' and 'alcohol and tobacco control.' The educational need scores were the highest in 'human-efficacy and regulation' and 'injury and sexual harassment prevention.' The two-dimensional cooperates were generated for the 31 health education topics and the two dimensional properties which divided the conceptual space were 'health-safety' for one and 'public/environmental-individual/personal' for the other. That is, middle school principals and teachers primarily, understand the health education curriculum in the sense of 'health vs. safety' and 'public/environmental vs individual/personal.' Conclusions: Health education curriculum and textbook should be developed based on teachers' needs and conditions for health education in school fields. The field-based health education programs or textbook would make more possible problem-solving health education for youth in real school fields.

  • PDF

Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, Pseudomonas chlororaphis O6

  • Kim, Chul Hong;Kim, Yong Hwan;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.220-227
    • /
    • 2014
  • The GacS/GacA system in the root colonizer Pseudomonas chlororaphis O6 is a key regulator of many traits relevant to the biocontrol function of this bacterium. Proteomic analysis revealed 12 proteins were down-regulated in a gacS mutant of P. chlororaphis O6. These GacS-regulated proteins functioned in combating oxidative stress, cell signaling, biosynthesis of secondary metabolism, and secretion. The extent of regulation was shown by real-time RT-PCR to vary between the genes. Mutants of P. chlororaphis O6 were generated in two GacS-regulated genes, trpE, encoding a protein involved in tryptophan synthesis, and prnA, required for conversion of tryptophan to the antimicrobial compound, pyrrolitrin. Failure of the trpE mutant to induce systemic resistance in tobacco against a foliar pathogen causing soft rot, Pectobacterium carotovorum SCCI, correlated with reduced colonization of root surfaces implying an inadequate supply of tryptophan to support growth. Although colonization was not affected by mutation in the prnA gene, induction of systemic resistance was reduced, suggesting that pyrrolnitrin was an activator of plant resistance as well as an antifungal agent. Study of mutants in the other GacS-regulated proteins will indicate further the features required for biocontrol-activity in this rhizobacterium.

Tissue Specific Expression of Wound-Inducible RCaM-2 Promoter in Transgenic Tobacco Plants (상처에 의해서 유도되는 벼 calmodulin promoter의 transgenic 담배에서조직 특이적 발현)

  • Choi Young Ju
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.176-181
    • /
    • 2005
  • To study calmodulin (CaM) gene expression and its regulation, rice CaM promoter (RCaM-2) was isolated and fused to $\beta-glucuronidase$ (GUS), reporter gene. X-Glue staining patterns revealed that GUS localization is high in meristemic tissues such as the stem apex, stolen tip, and vascular regions. GUS staining in the transverse sections of stem and petiole was restricted to the inside of the vascular system, and cortex and epidermis located outside of the vascular system usually did not show GUS staining even a plant that expressed strong activity. GUS activity was found to be tissue specific expressed and exhibited a dramatic transient increase in response to wounding. These results suggest that the 5'-flanking region of RCaM gene regulates wound-inducible expression.