• Title/Summary/Keyword: Titanium implant

Search Result 578, Processing Time 0.025 seconds

Histomorphometry and stability analysis of early loaded implants with two different surface conditions in beagle dogs

  • Kim, Dong-Seok;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.10-18
    • /
    • 2009
  • STATEMENT OF PROBLEM. Despite an improved bone reactions of Mg-incorporated implants in the animals, little yet has been carried out by the experimental investigations in functional loading conditions. PURPOSE. This study investigated the clinical and histologic parameters of osseointegrated Mg-incorporated implants in early loading conditions. MATERIAL AND METHODS. A total of 36 solid screw implants(diameter 3.75 mm, length 10 mm) were placed in the mandibles of 6 beagle dogs. Test groups included 18 Mg-incorporated implants. Turned titanium implants served as control. Gold crowns were inserted 4 weeks after implant placement and the dogs were immediately put on a food diet. Implants were observed for 10 weeks after loading. Radiographic assessments and stability tests were performed at the time of fixture installation, $2^{nd}$ stage surgery, 4 weeks after loading, and 10 weeks after loading. Histological observations and morphometrical measurements were also performed. RESULTS. Of 36 implants, 33 displayed no discernible mobility, corresponding to successful clinical function. There was no statistically significant difference between test implants and controls in marginal bone levels(P=.46) and RFA values. The mean BIC % in the Mg-implants was $54.5{\pm}8.4%$. The mean BIC % in the turned implant was $45.3{\pm}12.2%$. These differences between the Mg-implant and control implant were statistically significant(P=.005). CONCLUSIONS. The anodized, Mg-incorporated implant demonstrated significantly more bone-to-implant contact(BIC) in early loading conditions. CLINICAL IMPLICATIONS. The results of this study in beagle dogs suggest the possibility of achieving predictable stability of early loaded free-standing dental implants with Mg-incorporated surface.

PHOTOELASTIC STRESS ANALYSIS OF IMPLANTS ACCORDING TO FIXTURE DESIGN (임플랜트 고정체의 형태에 따른 광탄성 응력분석)

  • Mun So-Hee;Kim Nan-Young;Kim Yu-Lee;Cho Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.51-62
    • /
    • 2006
  • Purpose: The purpose of this study was to evaluate the pattern and the magnitude of stress distribution in the supporting tissues surrounding three different types of implants(ITI, 3i. and Bicon implant system) Material and method: Photoelastic models were made with PL-2 resin(Measurements Group, Raleigh, USA) and three implants of each kind were placed in the mandibular posterior edentulous area distal to the canine. For non-splinted restorations, individual crowns were fabricated on three titanium abutments. For splinted restorations, 3-unit axed partial dentures were fabricated. Photoelastic stress analyses were carried out to measure the fringe order around the implant supporting structure under simulated loaded conditions(15 lb. 30 lb). Conclusion: The results were as follows; 1 Regardless of the implant design, stresses were increased in the apex region of loaded implant when non-splinted restorations were loaded. While relatively even stress distribution occurred with splinted restorations. Splinting was effective in the second implant. 2. Strain around Bicon implant were lower than those of other implants, which confirmed the splinting effect. The higher the load, the more the stress occurred in supporting tissue, which was most obvious in the Bicon system. 3. Stress distribution in the supporting tissue was favorable in the ITI system. while the other side of 3i system tended to concentrate the stress in some parts.

Effect of bone graft materials on bone formation in guided bone regeneration using perforated titanium membrane (천공형 티타늄막을 이용한 골유도재생술 시 수종의 골이식재가 골재생에 미치는 영향)

  • Hong, Seung-Bum;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.1
    • /
    • pp.223-237
    • /
    • 2006
  • The purpose of the present study was to evaluate the effect of bone graft materials including deproteinized bovine bone(DBB), demineralized freeze-dried bone(DFDB), freeze-dried bone(FDB) on bone formation in guided bone regeneration using perforated titanium membrane(TM). 16 adult male rabbits(mean BW 2kg) were used in this study and 4 rabbits allotted to each test group. Intramarrow penetration(diameter 6.5mm) was done with round carbide bur on calvaria to promote blood supply and clot formation in the wound area. The test groups were devided into 4 groups as follows: TM only(test 1), TM +DBB(test 2), TM +DFDB(test 3), TM +FDB(test 4). Perforated titanium membrane was contoured in rectangular parallelepiped shape(0.5mm pore diameter, 10mm in one side, 2mm in inner height), filled the each graft material and placed on the decorticated carvaria. Perforated titanium membrane was fixed with resorbable suture materials. The animals were sacrificed at 2, 8 weeks after the surgery. Non-decalcified preparations were routinely processed for histologic analysis. The results of this study were as follows: 1. Perforated titanium membrane was biocompatible. 2. Perforated titanium membrane had capability of maintaining the space during the healing period but invasion of soft tissue through the perforations of titanium membrane decreased the space available for bone formation. 3. In test 1 group without bone graft material, the amount of bone formation and bone maturation was better than other test groups. 4. Among the graft materials, the effect of freeze-dried bone on bone formation was best. 5. In the test groups using deproteinized bovine bone, demineralized freeze-dried bone, bone formation was a little. The spacemaking capability of the membrane may be crucial for bone formation. The combined treatment with the perforated titanium membrane and deproteinized bovine bone or demineralized freeze-dried bone failed to demonstrate any added effect in the bone formation. Minimization of size and numbers of perforations of titanium membrane or use of occlusive titanium membrane might be effective to acquire predictable results in the vertical bone formation.

THE STUDY ABOUT THE MARGINAL FIT OF THE CASTING TITANIUM AND MACHINE-MILLED TITANIUM COPINGS (주조티타늄과 기계절삭티타늄 코핑의 변연적합성에 관한 연구)

  • Oh Su-Yeon;Vang Mong-Sook;Yang Hong-So;Park Sang-Won;Park Ha-Ok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.20-28
    • /
    • 2006
  • Statement of problem: The titanium has advantages of a high biocompatibility, a corrosion resistence, low density, and cheep price, so it is focused as a substituted alloy But it is quite difficult to cast with the tranditional method due to the high melting point, reacivity with element at, elevated temperature. By using the CAD-CAM system for the crown construction, it is possible to reduce the errors while proceeding the wax-up, investing, and casting procedure Purpose: The purposes of this study were to measure the marginal adaptation of the casting titanium coping and machine-milled titanium coping according to the casting methods and the marginal configurations. Material and method: The marginal configurations were used chamfer shoulder, and beveled shoulder. The total 30 copings were used, and these are divided into 6 groups according to the manufacturing method and marginal configuration. The gap between margin of the model and the restoration was measured with 3-dimensional measuring microscope. Results: The following results were obtained; 1. casting gold coping demonstrated the best marginal seal, followed by casting titanium coping finally machine-milled titanium copings. 2. In casting titanium coping, chamfer demonstrated the best marginal seal, followed by shoulder and beveled shoulder. There was no significantly difference in shoulder and beveled shoulder. But all margin form has clinically acceptable 3. In machine-milled titanium copings, chamfer demonstrated the best marginal seal, followed by shoulder and beveled shoulder. Beveled shoulder show large and uneven marginal gap Conclusions: Above result revealed that marginal adaptation of the titanim coping is avail able in the clinical range, it can be used as an alternative metal and it is prefered especially in chamfer or shoulder margin during implant superstructure fabrication. But there should be more research on machine-milled titanium in order to use it in the clinics.

Comparison of marginal and internal fit of zirconia abutments with titanium abutments in internal hexagonal implants (내부육각 연결형 임플란트에서 지르코니아 지대주와 티타늄 지대주의 변연 및 내면 적합도의 비교)

  • Kim, Young-Ho;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.2
    • /
    • pp.93-102
    • /
    • 2016
  • Purpose: The aim of this study was to evaluate the fit accuracy of two zirconia and titanium abutments in internal hexagonal implants. Materials and methods: One titanium abutment and two zirconia abutments were tested in internal hexagonal implants (TSV, Zimmer). Prefabricated zirconia abutments (ZirAce, Acucera) and customized zirconia abutments milled by the Zirkonzahn system (Zirkonzahn Max, Zirkonzahn) were selected and prefabricated titanium abutments (Hex-Lock, Zimmer) were used as a control. Eight abutments per group were connected to implants with 30 Ncm torque. The marginal gaps at abutment-implant interface, the internal gaps at internal hex, vertical and horizontal gaps between screws and screw seats in abutments were measured after sectioning the embedded specimens using a scanning electron microscope. Data analysis included one-way analysis of variance and the Scheffe test (n=16, ${\alpha}=0.05$). Results: The mean marginal gap of customized zirconia abutment was higher than those of two prefabricated zirconia and titanium abutments. The internal gaps at internal hex showed no significant differences between customized and prefabricated abutments and were higher than those of prefabricated titanium abutments. The mean vertical and horizontal gaps at screw in prefabricated zirconia abutment were higher than those of prefabricated titanium abutment. In the case of customized zirconia abutment, the mean horizontal gap at screw was higher than those of both the prefabricated zirconia and the titanium abutment but the mean vertical gap was not even measureable. The screw seats were clearly formed but did not match with abutment screws in prefabricated zirconia abutments. They were not, however, precisely formed in the case of customized zirconia abutments. Conclusion: Within the limitations of this study, the prefabricated titanium abutments showed better fit than the zirconia abutments, regardless of customized or prefabricated. Also, the customized zirconia abutments showed significantly higher marginal gaps and the fit was less accurate between screws and screw seats than the prefabricated abutments, titanium and zirconia.

Removable implant-supported partial denture using milled bar with Locator® attachments in a cleft lip & palate patient: A clinical report (구순구개열 환자에서 Locator® 유지장치가 장착된 milled titanium bar를 이용한 가철성 임플란트 피개 국소의치의 보철수복증례)

  • Yang, Sang-Hyun;Kim, Kyoung-A;Kim, Ja-Yeong;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.3
    • /
    • pp.207-214
    • /
    • 2015
  • Due to the limitations of conventional removable partial denture prostheses to treat a cleft lip & palate patient who shows scar tissue on upper lip, excessive absorption of the maxillary residual alveolar ridge, and class III malocclusion with narrow palate and undergrowth of the maxilla, 4 implants were placed on the maxillary edentulous region and a maxillary removable implant-supported partial denture was planned using a CAD/CAM milled titanium bar. Unlike metal or gold casting technique which has shrinkage after the molding, CAD/CAM milled titanium bar is highly-precise, economical and lightweight. In practice, however, it is very hard to obtain accurate friction-fit from the milled bar and reduction in retention can occur due to repetitive insertion and removal of the denture. Various auxiliary retention systems (e.g. $ERA^{(R)}$, $CEKA^{(R)}$, magnetics, $Locator^{(R)}$ attachment), in order to deal with these problems, can be used to obtain additional retention, cost-effectiveness and ease of replacement. Out of diverse auxiliary attachments, $Locator^{(R)}$ has characteristics that are dual retentive, minimal in vertical height and convenient of attachment replacement. Drill and tapping method is simple and the replacement of the metal female part of $Locator^{(R)}$ attachment is convenient. In this case, the $Locator^{(R)}$ attachment is connected to the milled titanium bar fabricated by CAD/CAM, using the drill and tapping technique. Afterward, screw holes were formed and 3 $Locator^{(R)}$ attachments were secured with 20 Ncm holding force for additional retention. Following this procedure, satisfactory results were obtained in terms of aesthetic facial form, masticatory function and denture retention, and I hereby report this case.

The experimental study of early loading on the Miniplate in the beagle dog (성견의 하악골에 식립된 Miniplate에 가한 조기 부하의 영향에 관한 실험적 연구)

  • Chung, Yong-Koo;Lee, Young-Jun;Chung, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.33 no.4 s.99
    • /
    • pp.307-317
    • /
    • 2003
  • Conventional osseointegrated titanium implants have many limitations; large size, limited location for placement of the implant, severity of the surgery, discomfort of initial healing, difficulty of oral hygiene and uncontrollable force direction. Recently titanium miniscrew and miniplate have been used for an alternative to conventional dental implant. But in relation to miniplate, miniscrew has disadvantages in that more potential inflammation, light orthodontic force application and limited orthodontic application. This study was conducted to evaluate the effectiveness of miniplate by observing the reactions of peri-implant tissues to early orthodontic and orthopedic loading of titanium miniplate. In four adult beagle dogs 10 miniplates were inserted into the alveolar bone using 20 osseointegrated titanium screws. 4 miniplates were placed in two dogs(dogA, B) and 6 miniplates in two dogs(dogC, D). In dogA, B miniplates were loaded with 200gm of force immediately after placement for 15 weeks. In dogc, D, miniplates were loaded with 400gm of force immediately after placement for 8 weeks. Miniplates of dogA were removed, dogA was healed for 4 weeks, and the area which was removed of miniscrew was examined. Following an observation period, the miniplates including miniscrews and the surrounding bone of dogB and dogC, D were removed, respectively. Undecalcified section along the long axis of miniscrews were made and the degree of osseointegration was examined under the light microscope. The results were as follows. 1. In the histologic features there was direct contact between bone and miniscrew in all groups except one, dogC control group. The loaded miniscrew demonstrated only a slight increase of the osseous proximaty when compared with unloaded miniscrew 2. There was no significant difference of the osseointegration of Peri-miniscrew surface between dogB and dogC, D. But dogB showed slightly more increased bone apposition than dogC, D 3. The gingiva overlapping the miniplate and miniscrew showed no inflammatory sign in clinical and histological aspects. 4. The impaled hard and soft tissues at the area which was removed of miniscrews showed good healing without inflammatory reaction. 5. The mobility showed slight increase in un-loaded miniplate but that was insignificant. Based on the results of this study, miniplate(C-tube) can be used as a firm osseous orthodontic and orthopedic anchorage unit immediately after insertion.

Response of osteoblast-like cells cultured on zirconia to bone morphogenetic protein-2

  • Han, Seung-Hee;Kim, Kyoung-Hwa;Han, Jung-Seok;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.227-233
    • /
    • 2011
  • Purpose: The aim of this study was to compare osteoblast behavior on zirconia and titanium under conditions cultured with bone morphogenetic protein-2. Methods: MC3T3-E1 cells were cultured on sandblasted zirconia and sandblasted/etched titanium discs. At 24 hours after seeding MC3T3-E1, the demineralized bone matrix (DBM) gel alone and the DBM gel with bone morphogenetic protein-2 (BMP-2) were added to the culture medium. The surface topography was examined by confocal laser scanning microscopy. Cellular proliferation was measured at 1, 4, and 7 days after gel loading. Alkaline phosphatase activity was measured at 7 days after gel loading. The mRNA expression of ALPase, bone sialoprotein, type I collagen, runt-related transcription factor 2 (Runx-2), osteocalcin, and osterix were evaluated by real-time polymerase chain reaction at 4 days and 7 days. Results: At 1, 4, and 7 days after loading the DBM gel alone and the DBM gel with BMP-2, cellular proliferation on the zirconia and titanium discs was similar and that of the groups cultured with the DBM gel alone and the DBM gel with BMP-2 was not significantly different, except for titanium with BMP-2 gel. ALPase activity was higher in the cells cultured with BMP-2 than in the other groups, but there was no difference between the zirconia and titanium. In ALPase, bone sialoprotein, osteocalcin, Runx-2 and osterix gene expression, that of cells on zirconia or titanium with BMP-2 gel was much more highly increased than titanium without gel at day 7. The gene expression level of cells cultured on zirconia with BMP-2 was higher than that on titanium with BMP-2 at day 7. Conclusions: The data in this study demonstrate that the osteoblastic cell attachment and proliferation of zirconia were comparable to those of titanium. With the stimulation of BMP-2, zirconia has a more pronounced effect on the proliferation and differentiation of the osteoblastic cells compared with titanium.

Exophytic bone formation using porous titanium membrane combined with pins in rabbit calvarium. (핀 고정 천공형 티타늄막을 이용한 수직적 체조제증대술에 관한 연구)

  • Kim, Young;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.273-288
    • /
    • 2006
  • The purpose of this study was to evaluate exophytically vertical bone formation in rabbit calvaria by the concept of guided bone regeneration with a custom-made porous titanium membrane combined with bone graft materials. For this purpose, a total of 12 rabbits were used, and decorticated calvaria were created with round carbide bur to promote bleeding and blood clot formation in the wound area. Porous titanium membranes (0.5 mm in pore diameter, 10 mm in one side, 2 mm in inner height) were placed on the decorticated calvaria, fixed with metal pins and covered with full-thickness flap. Experimental group I was treated as titanium membrane only. Experimental group II, III, IV was treated as titanium membrane with BBM, titanium membrane with DFDB and titanium membrane with FDB. The animals were sacrificed at 8 and 12 weeks after surgery, and new bone formation was assessed by histomorphometric as well as statistical analysis. 1. Porous titanium membrane was biocompatable and capable of maintaining the regeneration space. 2. At 8 and 12 weeks, all groups demonstrated exophytic bone formation and there was a statistical significant difference among different groups only at 12 weeks. 3. The DFDB group revealed the most new bone formation compared to other groups (p<0.05). 4. At 12 weeks, DFDB and FDB groups showed the most significant resorption of graft materials (p<0.05). 5. The BBM was not resorbed at all until 12 weeks. 6. The fixation metal pin revealed excellent effect in peripheral sealing. On the basis of these findings, we conclude that a porous titanium membrane may be used as an augmentation membrane for guided bone regeneration, and DFDB as an effective bone forming graft material. The fixation of the membrane with pin will be helpful in GBR technique. However, further study is required to examine their efficacy in the intraoral experiments.

Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity

  • Lee, Jung-Jin;Song, Kwang-Yeob;Ahn, Seung-Geun;Choi, Jung-Yun;Seo, Jae-Min;Park, Ju-Mi
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.172-177
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate cell toxicity due to ion release caused by galvanic corrosion as a result of contact between base metal and titanium. MATERIALS AND METHODS. It was hypothesized that Nickel (Ni)-Chromium (Cr) alloys with different compositions possess different corrosion resistances when contacted with titanium abutment, and therefore in this study, specimens ($10{\times}10{\times}1.5mm$) were fabricated using commercial pure titanium and 3 different types of Ni-Cr alloys (T3, Tilite, Bella bond plus) commonly used for metal ceramic restorations. The specimens were divided into 6 groups according to the composition of Ni-Cr alloy and contact with titanium. The experimental groups were in direct contact with titanium and the control groups were not. After the samples were immersed in the culture medium - Dulbecco's modified Eagle's medium[DMEM] for 48 hours, the released metal ions were detected using inductively coupled plasma mass spectrometer (ICP-MS) and analyzed by the Kruskal-Wallis and Mann-Whitney test (P<.05). Mouse L-929 fibroblast cells were used for cell toxicity evaluation. The cell toxicity of specimens was measured by the 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyltetrazolium bromide (MTT) test. Results of MTT assay were statistically analyzed by the two-way ANOVA test (P<.05). Post-hoc multiple comparisons were conducted using Tukey's tests. RESULTS. The amount of metal ions released by galvanic corrosion due to contact between the base metal alloy and titanium was increased in all of the specimens. In the cytotoxicity test, the two-way ANOVA showed a significant effect of the alloy type and galvanic corrosion for cytotoxicity (P<.001). The relative cell growth rate (RGR) was decreased further on the groups in contact with titanium (P<.05). CONCLUSION. The release of metal ions was increased by galvanic corrosion due to contact between base metal and titanium, and it can cause adverse effects on the tissue around the implant by inducing cytotoxicity.