• Title/Summary/Keyword: Titanium carbide (TiC)

Search Result 76, Processing Time 0.023 seconds

Microstructure and Hardness of Titanium Aluminide/Carbide Composite Coatings Prepared by Reactive Spray Method (반응성 스프레이방법으로 제작한 티타늄 알루미나이드/탄화물 복합박막의 미세조직과 경도)

  • Han, Chang-Suk;Jin, Sung-Yooun
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.350-358
    • /
    • 2020
  • A variety of composite powders having different aluminum and carbon contents are prepared using various organic solvents having different amounts of carbon atoms in unit volume as ball milling agents for titanium and aluminum ball milling. The effects of substrate temperature and post-heat treatment on the texture and hardness of the coating are investigated by spraying with this reduced pressure plasma spray. The aluminum part of the composite powder evaporates during spraying, so that the film aluminum content is 30.9 mass%~37.4 mass% and the carbon content is 0.64 mass%~1.69 mass%. The main constituent phase of the coating formed on the water-cooled substrate is a non-planar α2 phase, obtained by supersaturated carbon regardless of the alloy composition. When these films are heat-treated at 1123 K, the main constituent phase becomes γ phase, and fine Ti2AlC precipitates to increase the film hardness. However, when heat treatment is performed at a higher temperature, the hardness is lowered. The main constitutional phase of the coating formed on the preheated substrate is an equilibrium gamma phase, and fine Ti2AlC precipitates. The hardness of this coating is much higher than the hardness of the coating in the sprayed state formed on the water-cooled substrate. When hot pressing is applied to the coating, the porosity decreases but hardness also decreases because Ti2AlC grows. The amount of Ti2AlC in the hot-pressed film is 4.9 vol% to 15.3 vol%, depending on the carbon content of the film.

Tribological Characteristics of TiC, TiN and TiC/TiN Coatings (TiC, TiN과 TiC/TiN 코팅의 트라이볼로지 특성)

  • Jeon, Chan Yeal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1253-1258
    • /
    • 2014
  • The tribological properties of TiC, TiN and TiC/TiN coatings on steels prepared by the cathodic-arc (CA) ion plating technique were investigated. Experiments were carried out on a tribo-test machine using a Falex journal V block system. The friction and wear characteristics of the coatings were determined by varying the applied load and sliding speed. The TiC, TiN and TiC/TiN coatings markedly increased the tribological characteristics of the surface. As far as a single layer coating was concerned, TiN goes better results than TiC. However, the TiC/TiN multilayer coating performed better than either single layer coating. The major factor in the improved performance of the multilayer coating was the role of TiC in improving the adhesion between the external TiN layer and the substrate steel.

A Study on Microstructure and Mechanical Properties of TiC/Steel Composites Fabricated by Powder Metallurgy Process (분말야금공정으로 제조된 TiC/steel 금속복합재료의 미세조직 및 기계적 물성 연구)

  • Lee, Jihye;Cho, Seungchan;Kwon, Hansang;Lee, Sang-Kwan;Lee, Sang-Bok;Kim, Daeha;Kim, Junghwan
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.311-316
    • /
    • 2021
  • In this study, TiC/steel metal matrix composites were fabricated by powder metallurgy process using Fealloy powders with 3 wt.% Cr and 10 wt.% Cr, respectively, as matrix material. Subsequently, the composite samples were heat treated by the annealing and quenching-tempering(Q-T), respectively, to understand the effect of heat treatment on the mechanical properties of the composites. The correlation between microstructure and structural strength depending on the chromium content and the heat treatment conditions was studied through tensile, compressive, and transverse rupture test and microstructural analysis. In the case of TiC/steel composite containing 10 wt.% Cr, the tensile strength and transverse rupture strength at room temperature were significantly lowered by the influence of coarse chromium carbide formed at the TiC/steel interface. On the other hand, both TiC/steel composites containing 3 wt.% Cr and 10 wt.% Cr showed much higher compressive strength of about 4 GP after quenching-tempering compared to the annealed specimens regardless of the presence of the chromium carbide.

A Study on the Tribological Characteristics of Surface Modification (The 1st) (표면개질의 트라이볼로지 특성에 관한 연구(제1보))

  • Oh, Seong-Mo;Chae, Wang-Seok;Lee, Bong-Goo;Kim, Dong-Hyun;,
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.145-150
    • /
    • 1999
  • We have studied on the tribological characteristics of surface modification by Arc Ion Implantation(AIP) coating method. Coating materials were deposited by the Titanium carbide(TiC) and Titanium nitride(TiN). An experimental process was established to determine the tribological characteristics of friction and wear behaviour with the variation of applied load, temperature and the time by the Falex friction and wear test machine. The results, It can be improved that when the surface modification of hard coatings(TiC, TiN) was deposited steel, the tribological characteristics become better. It is argued that improved because of excellence of the anti-wear, the extreme pressure properties and the heat stability.

  • PDF

Effect of Additive Amount on Microstructure and Fracture Toughness of SiC-TiC Composites

  • Min-Jin Kim;Young-Wook Kim;Wonjoong Kim;Hun-Jin Lim;Duk-Ho Cho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.91-95
    • /
    • 2000
  • Powder mixtures of $\beta$-SiC-TiC in a weight ratio of 2:1 containing 5-20 wt% additives ($Al_2O_3$-$Y_2O_3$) were liquid-phase sintered at $1830^{\circ}C$ for 1h by hot-pressing and subsequently annealed at $1950^{\circ}C$ for 6h to enhance grain growth. The annealed specimens revealed a microstructure of \"in situ-toughened composite\" as a result of the $\beta$longrightarrow$\alpha$ phase transformation of SiC during annealing. The increase of the content of additives accelerated the growth of elongated $\alpha$-SiC grains with higher aspect ratio and improved fracture toughness. The fracture toughness of SiC-TiC composite containing 20 wt% additive was 6.2 MPa.$m^{1/2}$.2}$.

  • PDF

Abrasiveness Behavior of Counterpart Sliding Against Titanium Carbide Based Metal Matrix Composite (탄화 티타늄 금속기 복합재에 대한 상대재의 마모거동)

  • Lee, Jeong-Keun
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.450-454
    • /
    • 2006
  • Wear of steel plate was measured during unlubricated sliding against TiC composites. These composites consist of round TiC grains and steel matrix. TiC grain itself exhibits low surface roughness and round shape, which does not bring its counterpart into severe damage from friction. In our work a classical experimental design was applied to find out a dominant factor in counterpart wear. The analysis of the data showed that only the applied load has a significant effect on the counterpart wear. Wear rate of counterpart increased non-linearly with applied load. Amount of wear was discrepant from expectation of being in proportion to the load by analogy with friction force. Our experimental result from treating matrix variously revealed bimodal wear behavior between the composites and counterpart where a mode seems to result from the special lubricant characteristic of TiC grains, and the other is caused by metal-to-metal contact. The two wear mechanisms were discussed.

Material Removal Rate Modeling of SiO2/TiO2 Mixed-Abrasive Slurry CMP for SiC (SiO2/TiO2 혼합입자 슬러리 SiC CMP의 재료제거율 모델링)

  • Hyunseop Lee
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.72-75
    • /
    • 2023
  • Silicon carbide (SiC) is used as a substrate material for power semiconductors; however, SiC chemical mechanical polishing (CMP) requires considerable time owing to its chemical stability and high hardness. Therefore, researchers are attempting to increase the material removal rate (MRR) of SiC CMP using various methods. Mixed-abrasive CMP (MAS CMP) is one method of increasing the material removal efficiency of CMP by mixing two or more particles. The aim of this research is to study the mathematical modeling of the MRR of MAS CMP of SiC with SiO2 and TiO2 particles. With a total particle concentration of 32 wt, using 80-nm SiO2 particles and 25-nm TiO2 particles maximizes the MRR at 8 wt of the TiO2 particle concentration. In the case of 5 nm TiO2 particles, the MRR tends to increase with an increase in TiO2 concentration. In the case of particle size 10-25 nm TiO2, as the particle concentration increases, the MRR increases to a certain level and then decreases again. TiO2 particles of 25 nm or more continuously decreased MRR as the particle concentration increased. In the model proposed in this study, the MRR of MAS CMP of SiC increases linearly with changes in pressure and relative speed, which shows the same result as the Preston's equation. These results can contribute to the future design of MAS; however, the model needs to be verified and improved in future experiments.

Microstructure, Mechanical and Wear Properties of Hot-pressed $Si_3N_4-TiC$ Composites

  • Hyun Jin Kim;Soo Whon Lee;Tadachika Nakayama;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.317-323
    • /
    • 1999
  • Si3N4-TiC composites have been known as electrically conductive ceramics. $Si_3N_4-TiC$ composites with 2 wt% $Al_2O_3$ and 4 wt% $Y_2O_3$ were hot pressed in $N_2$ environment. The mechanical properties including hardness, fracture toughness, and flexural strength and tribological properties were investigated as a function of TiC content. $Si_3N_4-40$ vol% TiC composite was hot pressed at $1,750^{\circ}C$, $1,800^{\circ}C$, and $1,850^{\circ}C$ for 1, 3 and 5 hours in $N_2$ gas. Mechanical and tribolgical properties depended on microstructures, which were controlled by hte TiC content, hot press temperature, and hot press holding time. However, mechanical properties and tribological behaviors were degraded by the chemical reaction between TiC and N. The chemically reacted products such as TiCN, SiC, and $SiO_2$ were detered by the X-ray diffraction analysis.

  • PDF

An Empirical Study on Drilling Characteristics of Titanium Carbide Metal Matrix Composites (1) (탄화 티타늄 금속기 복합재의 드릴가공 특성에 대한 경험적 고찰(1))

  • Lee, Jeong-Keun
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.445-449
    • /
    • 2006
  • The experimental data from the central composite design runs were utilized for mathematical models far the drilling characteristics containing linear, quadratic and interactive effects of the parameters such as volume fraction of TiC in the composites, drill speed, feed rate and drill diameter. The models were developed via stepwise selection where the insignificant effects were removed using t-test. The models were subjected to optimization of maximizing drill life and satisfying the other constraints.

A Study on the TiC Coating Using Hollow Cathode Discharge Ion Plating (HCD 이온 플레이팅 방법을 이용한 TiC 코팅에 관한 연구)

  • Kim, In-Cheol;Seo, Yong-Woon;Whang, Ki-Whoong
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.261-264
    • /
    • 1991
  • Titanium carbide(TiC) films were deposited on stainless-steel sheets using HCD(Hollow Cathode Discharge) reactive ion plating. Acetylene gas was used as the reactant gas. The characteristics of TiC films were examined by X-Ray diffraction, $\alpha$-step, ESCA(Electron Spectroscopy for Chemical Analysis), and, AES(Auger Electron Spectroscopy). The results were discussed with regard to various deposition conditions(bias voltage, acetylene flow rate, temperature).

  • PDF