• Title/Summary/Keyword: Titanium Carbide

Search Result 133, Processing Time 0.018 seconds

A study of apatite formation on NaOH treated Ti alloys with different Iron content (NaOH 처리한 Fe 첨가된 Ti alloys의 아파타이트 형성관찰)

  • Seung-Woo Lee;Yun-Jong Kim;Jae-Gyeoung Ruy;Taik-Nam Kim
    • The Journal of Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.23-32
    • /
    • 2004
  • Metals, ceramics and polymers are widely used as bioimplant materials. However, Ti and Ti alloys are widely used because of its high strength to weight ratio and good biocompatibility when implanted in the body. In this experiment, Ti alloys of Grade-4 (gr4), 0.2 wt % Fe, 0.5 wt % Fe and 2 wt % Fe were studied for their surface morphology and HAp forming ability on the metal substrate for different treatments. Intially, the samples were mechanically polished on silicone carbide paper (No.-2000). The polished samples were treated with 5M NaOH solution at $60^{\circ}C$ for 24 hours. The NaOH treated samples were washed gently with distill water and dried at $40^{\circ}C$ for 1 day. The dried samples were heated in air at $600^{\circ}C$ for 1 hour. The surface morphology of these samples were studied using SEM. The SEM studies showed network of pores in all samples. These samples were immersed in stimulated body fluids (SBF) kept at $36.5^{\circ}C$ for different periods over the length of 1 to 14 days. The apatite formation was confirmed on all Ti-alloys using EDAX.

  • PDF

Tensile Strength and Surface Characteristics of Mn Steel with Ti Addition (Ti을 첨가한 Mn 강의 인장특성과 표면특성)

  • Ryung-kyung Hwang;Sung-Tae Yoon;Gyun-Yung Lee;Sun-Joong Hwang
    • Journal of Korea Foundry Society
    • /
    • v.44 no.1
    • /
    • pp.9-15
    • /
    • 2024
  • In this study, in order to improve the lifespan of parts made of manganese steel, manganese steel was cast by varying the amount of Ti added to the steel. In order to confirm the characteristics of the cast material, processing characteristics including tensile and surface characteristics and bearing ratio were investigated. It was confirmed that when the amount of Ti added to high manganese steel exceeds 0.5%, the strength of the alloy is improved due to grain refinement, and fine carbides are formed inside the steel. This results in increased resistance to surface wear compared to the alloy with only Mn added. There was no significant difference in the increase in tensile strength as the Ti content in manganese steel was increased. However, inclusion of Ti showed a small but greater effect on wear resistance compared to Mn, and the size and the distribution of carbides become coarse depending on the Ti content. and was evenly distributed. It was confirmed that the strength and surface properties of manganese steel can be improved by the addition of Ti to improve the lifespan of parts made with this steel. It was found that Ti is effective in developing materials with excellent wear resistance due to refinement of dendrite crystal grains. In the samples where Ti was added, the carbide appears to increase the resistance to surface roughness, and due to the nature of Mn steel, surface hardening begins to occur, which appears to extend the life.

Influence of bearing surface angle of abutment screw on mechanical stability of joint in the conical seal design implant system (내부 원추형 연결형태 임플란트에서 지대주 나사머리의 좌면각도가 연결부 기계적 안정성에 미치는 영향)

  • Kim, Joo-Hyeun;Huh, Jung-Bo;Yun, Mi-Jung;Kang, Eun-Sook;Heo, Jae-Chan;Jeong, Chang-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.3
    • /
    • pp.206-214
    • /
    • 2014
  • This study is to evaluate how different bearing surface angles of abutment screw affect the mechanical stability of the joint in the conical seal design implant system. Materials and Methods: Internal connection type regular implants, two-piece cemented type abutments and tungsten carbide/carbon-coated titanium alloy abutment screws were selected. Titanium alloy screws with conical ($45^{\circ}$) and flat ($90^{\circ}$) head designs which fit on to abutment were fabricated. The abutments were tightened to implants with 30 Ncm by digital torque gauge. The loading was applied once to the central axis of abutment. The mean axial displacement was measured using micrometer before and after the tightening and loading (n = 5). The abutment was tightened to implants with 30 Ncm and T-shape stainless steel crown was cemented. Then the change in the amount of reverse-torque was measured after the repeated loading to the central axis, and the place 5 mm away from the central axis. Compressive bending and fatigue strength were measured at the place 5 mm away from the central axis (n = 5). Results: Both groups showed the largest axial displacement when abutment screw tightening and total displacement was greater in the flat head group compared to conical head group (P < 0.05). However, there were no significant differences in reverse torque value, compressive bending and fatigue strength (P > 0.05). Conclusion: Within the limitations of this study, the abutment screw head design had no effect on two groups regarding the joint stability, however the conical head design affected the settlement of abutment resulting in the reduced total displacement.