• Title/Summary/Keyword: Tissue reaction

Search Result 1,062, Processing Time 0.02 seconds

Anti-inflammatory and Antioxidative Effects of Lotus Root Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells (치주염 원인균 LPS-PG로 유도된 인체 치은섬유아세포에서 연뿌리 추출물에 대한 항염증 및 항산화 효과)

  • Lee, Young-Kyung;Kim, Chul Hwan;Jeong, Dae Won;Lee, Ki Won;Oh, Young Taek;Kim, Jeong Il;Jeong, Jin-Woo
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.565-573
    • /
    • 2022
  • Gingival inflammation is one of the main causes that can be related to various periodontal diseases. Human gingival fibroblast (HGF) is the major constituent in periodontal connective tissue and secretes various inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), upon lipopolysaccharide stimulation. This study is aimed at investigating the anti-inflammatory and antioxidative activities of Lotus Root extract (LRE) in Porphyromonas gingivalis derived lipopolysaccharide (LPS-PG)-stimulated HGF-1 cells. The concentration of NO and PGE2, as well as their responsible enzymes, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), was analyzed by Griess reaction, ELISA, and western blot analysis. LPS-PG sharply elevated the production and protein expression of inflammatory mediators, which were significantly attenuated by LRE treatment in a dose-dependent manner. LRE treatment also suppressed activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (MyD88) and nuclear factor-κB (NF-κB) in LPS-PG-stimulated HGF-1 cells. In addition, one of phase II enzyme, NAD(P)H quinone dehydrogenase (NQO)-1, and its transcription factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), were significantly induced by LRE treatment. Consequently, these results suggest that LRE ameliorates LPS-PG-induced inflammatory responses by attenuating TLR4/MyD88-mediated NF-κB, and activating NQO-1/Nrf2 antioxidant response element signaling pathways in HGF-1 cells.

Lung Injury Indices Depending on Tumor Necrosis Factor-$\alpha$ Level and Novel 35 kDa Protein Synthesis in Lipopolysaccharide-Treated Rat (내독소처치 흰쥐에서 Tumor Necrosis Factor-$\alpha$치 상승에 따른 폐손상 악화 및 35 kDa 단백질 합성)

  • Choi, Young-Mee;Kim, Young-Kyoon;Kwon, Soon-Seog;Kim, Kwan-Hyoung;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1236-1251
    • /
    • 1998
  • Background : TNF-$\alpha$ appears to be a central mediator of the host response to sepsis. While TNF-$\alpha$ is mainly considered a proinflammatory cytokine, it can also act as a direct cytotoxic cytokine. However, there are not so many studies about the relationship bet ween TNF-$\alpha$ level and lung injury severity in ALI, particularly regarding the case of ALI caused by direct lung injury such as diffuse pulmonary infection. Recently, a natural defense mechanism, known as the stress response or the heat shock response, has been reported in cellular or tissue injury reaction. There are a number of reports examining the protective role of pre-induced heat stress proteins on subsequent LPS-induced TNF-$\alpha$ release from monocyte or macrophage and also on subsequent LPS-induced ALI in animals. However it is not well established whether the stress protein synthesis such as HSP can be induced from rat alveolar macrophages by in vitro or in vivo LPS stimulation. Methods : We measured the level of TNF-$\alpha$, the percentage of inflammatory cells in bronchoalveolar lavage fluid, protein synthesis in alveolar macrophages isolated from rats at 1, 2, 3, 4, 6, 12, and 24 hours after intratracheal LPS instillation. We performed histologic examination and also obtained histologic lung injury index score in lungs from other rats at 1, 2, 3, 4, 6, 12, 24 h after intratracheal LPS instillation. Isolated non-stimulated macrophages were incubated for 2 h with different concentration of LPS (0, 1, 10, 100 ng/ml, 1, or 10 ${\mu}g/ml$). Other non-stimulated macrophages were exposed at $43^{\circ}C$ for 15 min, then returned to at $37^{\circ}C$ in 5% CO2-95% for 1 hour, and then incubated for 2 h with LPS (0, 1, 10, 100ng/ml, 1, or 10 ${\mu}g/ml$). Results : TNF-$\alpha$ levels began to increase significantly at 1 h, reached a peak at 3 h (P<0.0001), began to decrease at 6 h, and returned to control level at 12 h after LPS instillation. The percentage of inflammatory cells (neutrophils and alveolar macrophages) began to change significantly at 2 h, reached a peak at 6 h, began to recover but still showed significant change at 12 h, and showed insignificant change at 24 h after LPS instillation compared with the normal control. After LPS instillation, the score of histologic lung injury index reached a maximum value at 6 h and remained steady for 24 hours. 35 kDa protein band was newly synthesized in alveolar macrophage from 1 hour on for 24 hours after LPS instillation. Inducible heat stress protein 72 was not found in any alveolar macrophages obtained from rats after LPS instillation. TNF-$\alpha$ levels in supernatants of LPS-stimulated macro phages were significantly higher than those of non-stimulated macrophages(p<0.05). Following LPS stimulation, TNF-$\alpha$ levels in supernatants were significantly lower after heat treatment than in those without heat treatment (p<0.05). The inducible heat stress protein 72 was not found at any concentrations of LPS stimulation. Whereas the 35 kDa protein band was exclusively found at dose of LPS of 10 ${\mu}g/ml$. Conclusion : TNF-$\alpha$ has a direct or indirect close relationship with lung injury severity in acute lung injury or acute respiratory distress syndrome. In vivo and in vitro LPS stimulation dose not induce heat stress protein 72 in alveolar macrophages. It is likely that 35 kDa protein, synthesized by alveolar macrophage after LPS instillation, does not have a defense role in acute lung injury.

  • PDF