• Title/Summary/Keyword: Tissue processing

Search Result 290, Processing Time 0.028 seconds

A study on the debelopment of the Ultrasonic imaging system for tissue characterization (조직의 정량화를 위한 초음파 영상시스템의 개발에 관한 연구)

  • Choe, Jong-Ho;Choe, Jong-Su
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.31-42
    • /
    • 1987
  • An ultrasonic pulse-echo diagnostic system for tissue characterization with the estimation of attenuation coefficients is developed and its performance has been examined by system implementation. The system divided into the ultrasonic generator, A/D converter, data communication, computer for signal processing. The methods for estimating the spatial distribution of acoustic attenuation coefficients using the moment analysis are proposed. The experimental results indicate the potential of the methods for tissue characterization.

  • PDF

A Dynamic Accuracy Estimation for GPU-based Monte Carlo Simulation in Tissue Optics

  • Cai, Fuhong;Lu, Wen
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.551-555
    • /
    • 2017
  • Tissue optics is a well-established and extensively studied area. In the last decades, Monte Carlo simulation (MCS) has been one of the standard tools for simulation of light propagation in turbid media. The utilization of parallel processing exhibits dramatic increase in the speed of MCS's of photon migration. Some calculations based on MCS can be completed within a few seconds. Since the MCS's have the potential to become a real time calculation method, a dynamic accuracy estimation, which is also known as history by history statistical estimators, is required in the simulation code to automatically terminate the MCS as the results' accuracy achieves a high enough level. In this work, spatial and time-domain GPU-based MCS, adopting the dynamic accuracy estimation, are performed to calculate the light dose/reflectance in homogeneous and heterogeneous tissue media. This dynamic accuracy estimation can effectively derive the statistical error of optical dose/reflectance during the parallel Monte Carlo process.

Management of Failed Thumb Replantation (Early Soft Tissue Removal with Vascularized Flap Coverage of Amputated Phalangeal Bone) (무지 재접합 실패예에 대한 조기 치료로서 절단부의 수지골과 유리 피판술을 이용한 무지의 재건)

  • Chung, Duke-Whan;Kim, Ki-Bong
    • Archives of Reconstructive Microsurgery
    • /
    • v.10 no.2
    • /
    • pp.86-92
    • /
    • 2001
  • Failure of replantation is inevitable in finger replantation surgery, around 10% of failure rate are reported in many authors. Management of the failed finger replantation is one of big dilemma to microsurgeons. We report 5 cases of thumb reconstruction after failure of replantation. The reconstructive surgery composed with early debridement of soft tissue that are under gangrenous processing, extract the phalangeal bone without any soft tissues. Osteosynthesis of the extracted phalangeal bone with host phalangeal bone. The exposed bony portion covered with vascularized flaps such as revered radial forearm pedicled flap, free radial forearm flap and neurovascular island finger flap. This procedure underwent within a week after vascular insufficiency developed. All of the flaps are survived, bone union achieved within 3 months. The function and external appearance of the reconstructed thumb were encouraging; Pinch Power was average 1.2 Pounds. Early removal of necrotizing soft tissue followed by covering none vascular phalangeal bone which extracted from the dead phalanx with vascularized flap is one of the useful alterative solutions in failed replantation surgery in hand.

  • PDF

Studies on Histological Changes in Sea Foods during Processing and Storage 1. Changes in Muscular Tissue and Fat Migration of Eel, Anguilla japonica, during Drying (수산식품의 가공 및 저장중의 조직학적 변화에 관한 연구 1. 건조에 의한 뱀장어 근육조직의 변화와 지방의 이동)

  • SONG Dae-Jin;HA Jin-Hwan;LEE EUHG-HO
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.2
    • /
    • pp.137-146
    • /
    • 1982
  • Histological study of eel was carried out to determine the effect of drying on muscular tissue and fat movement. The results are as follows: (1) Changes of muscular tissue during drying may he divided into two stages early and late. In the early stage there was apparent dehydration of connective tissue while in the late stage muscle fibre dehydration appears to occur. (2) Movement of fat during drying depends upon division and contraction of the myocommata caused by inner structural changes. This phenomenon appeared to be more apparent in the late rather than the early drying stage.(3) After freeze-drying traces of ice crystals were detected around the muscle cells. These ice crystals remained even after rehydration. (4) When muscular tissue was heated the connective tissue melted while muscle fiber dehydrated and solidified.

  • PDF

Three-Dimensional Printed 3D Structure for Tissue Engineering (3 차원 프린팅 기술로 제작된 조직공학용 3 차원 구조체)

  • Park, Jeong Hun;Jang, Jinah;Cho, Dong-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.817-829
    • /
    • 2014
  • One of the main issues in tissue engineering has been the development of a three-dimensional (3D) structure, which is a temporary template that provides the structural support and microenvironment necessary for cell growth and differentiation into the target tissue. In tissue engineering, various biomaterials and their processing techniques have been applied for the fabrication of 3D structures. In particular, 3D printing technology enables the fabrication of a complex inner/outer architecture using a computer-aided design and manufacturing (CAD/CAM) system, and it has been widely applied to the fabrication of 3D structures for tissue engineering. Novel cell/organ printing techniques based on 3D printing have also been developed for the fabrication of a biomimetic structure with various cells and biomaterials. This paper presents a comprehensive review of the functional scaffold and cell-printed structures based on 3D printing technology and the application of this technology to various kinds of tissues regeneration.

A Fat-Tissue Mimic Phantom for Therapeutic Ultrasound

  • Kim, Mi Seon;Kim, Ju Young;Jung, Hyun Du;Kim, Jae Young;Choi, Heung Ho
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.153-159
    • /
    • 2014
  • As the number of treatments in the therapeutic ultrasound field targeted at fat tissue increase, the performance of the equipment should be evaluated for safety using a fat phantom. In this study, a fat phantom was fabricated using olive oil and a tissue-mimicking material (TMM) phantom. To evaluate the acoustic properties of the TMM phantom according to the changes in the olive oil, the composition ratio of a liquid mixture of olive oil with a surfactant was adjusted from 5-20% in 5% steps. The acoustic properties of the phantom were evaluated using the sound velocity, attenuation coefficient, density, and acoustic impedance. The experimental results showed that the sound velocity decreased with increasing amount of olive oil but the other acoustic properties did not change. In addition, the phantom using an olive-oil mixture with a 15% composition ratio was most similar to the acoustic characteristics of fat tissue with a sound velocity of 1477.35 m/s, an attenuation coefficient of 0.514 dB/MHz-cm, a density of $1.07g/cm^3$, and an acoustic impedance of 1.575 MRayl. These experimental results are expected contribute to the accuracy of the results using a TMM phantom and will be useful for the therapeutic ultrasound field targeted at subcutaneous fat tissue.

Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development

  • Irawan, Vincent;Sung, Tzu-Cheng;Higuchi, Akon;Ikoma, Toshiyuki
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.673-697
    • /
    • 2018
  • BACKGROUND: Cartilage tissue engineering (CTE) aims to obtain a structure mimicking native cartilage tissue through the combination of relevant cells, three-dimensional scaffolds, and extraneous signals. Implantation of 'matured' constructs is thus expected to provide solution for treating large injury of articular cartilage. Type I collagen is widely used as scaffolds for CTE products undergoing clinical trial, owing to its ubiquitous biocompatibility and vast clinical approval. However, the long-term performance of pure type I collagen scaffolds would suffer from its limited chondrogenic capacity and inferior mechanical properties. This paper aims to provide insights necessary for advancing type I collagen scaffolds in the CTE applications. METHODS: Initially, the interactions of type I/II collagen with CTE-relevant cells [i.e., articular chondrocytes (ACs) and mesenchymal stem cells (MSCs)] are discussed. Next, the physical features and chemical composition of the scaffolds crucial to support chondrogenic activities of AC and MSC are highlighted. Attempts to optimize the collagen scaffolds by blending with natural/synthetic polymers are described. Hybrid strategy in which collagen and structural polymers are combined in non-blending manner is detailed. RESULTS: Type I collagen is sufficient to support cellular activities of ACs and MSCs; however it shows limited chondrogenic performance than type II collagen. Nonetheless, type I collagen is the clinically feasible option since type II collagen shows arthritogenic potency. Physical features of scaffolds such as internal structure, pore size, stiffness, etc. are shown to be crucial in influencing the differentiation fate and secreting extracellular matrixes from ACs and MSCs. Collagen can be blended with native or synthetic polymer to improve the mechanical and bioactivities of final composites. However, the versatility of blending strategy is limited due to denaturation of type I collagen at harsh processing condition. Hybrid strategy is successful in maximizing bioactivity of collagen scaffolds and mechanical robustness of structural polymer. CONCLUSION: Considering the previous improvements of physical and compositional properties of collagen scaffolds and recent manufacturing developments of structural polymer, it is concluded that hybrid strategy is a promising approach to advance further collagen-based scaffolds in CTE.

MICROSCOPIC OBSERVATIONS OF FAT TRANSLOCATION IN THE TISSUE OF YELLOW CORVENIA DURING SALTING AND DRYING ("굴비" 제조과정중의 지방의 이동에 대한 조직학적 관찰)

  • PYEUN Jae-Hyeung;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.63-71
    • /
    • 1968
  • Salted and dried yellow corvenia(Pseudosciaena manchurica), so called 'Gul-bi', is one of nation-widely consuming fish foo::ls. It is suitable for a long term preservation and its pro-duce is also a great deal on sea food processing in this country. The texture of 'Gul-bi', however, have often appeared to be a delicate factor for the quality of the product. The loss or dislocation of fat in the tissue of the fish resulted by salting and drying is believed to profoundly relate to the texture of product. In this paper, the tissue of yellow corvenia and movement of fat were microscopically observed before salting, immediately after salting, and after drying and the results observed in the tissues dry salted, brine salted, and brine salted with the addition of BHA were compared. The cross section of yellow corvenia muscle showed that a distinctive border by connective tissue between white and red muscle could not be seen in general, and red muscle was surrounded by hypodermic fatty tissues. In the tissue of fresh yellow corvenia, the fat was mainly distributed in hypodermic fat layer which located under the corium while rarely distributed in white muscle. It was found that some parts of the fat in the tissue were permeated into intermuscular tissue passing through the connective tissues during salting. The result Was the same in both dry-salting and brine-salting tissue. However, the fat translocated into intermuscular tissues disappeared during drying process in the salted without BHA tissues whereas in BHA added tissue. This result suggested that BHA may take a role of multiple effect in translocation of fat in tissues as well as in retarding oxidation. In an advanced stage of salted and dehydration, the muscle fibers were ajoined together and then limits between muscle fibers already became indistinguishable. And the migrated fat into intermuscular tissue aggregated around the connective tissue and are apt to gradually to flow out from the muscular system through these tissues.

  • PDF

A COMPARATIVE STUDY ON THE DIMENSIONAL CHANGE OF THE DIFFERENT DENTURE BASES

  • Kim, Myung-Joo;Kim, Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.6
    • /
    • pp.712-721
    • /
    • 2006
  • Statement of problem. Acrylic resin is most commonly used for denture bases. However, acrylic resin has week points of volumetric shrinkage during polymerization that reduces denture fit. The expandability of POSS (Polyhedral Oligomeric Silsesquioxane) containing polymer could be expected to reduce the polymerization shrinkage of denture bases and would increase the adaptability of the denture to the tissue. Purpose. The purpose of this study was to compare the dimensional stability in the conventional acrylic resin base, POSS-containing acrylic resin base, and metal bases. Materials and methods. Thirty six maxillary edentulous casts and dentures of different base were fabricated. Tooth movement and tissue contour change of denture after processing (resin curing, deflasking, decasting and finishing without polishing) and immersion in artificial saliva at $37^{\circ}C$ for 1 week and 4 weeks were measured using digital measuring microscope and threedimensional laser scanner. Results. The results were as follows: 1. The conventional resin group showed significant (p<0.01) dimensional change throughout the procedure (processing and immersion in artificial saliva). 2. After processing, the metal group and POSS resin group showed lower linear and 3-dimensional change than conventional resin group (p<0.01). 3. There was no statistically significant linear and 3-dimensional change after immersion for 1 week and 4 weeks in metal and POSS resin group. 4. In all groups, the midline and alveolar ridge crest area presented smaller 3-dimensional change compared with vestibule and posterior palatal seal area after processing and soaking in artificial saliva for 1 week and 4 weeks (p<0.01). Conclusion. In this study, a reinforced acrylic-based resin with POSS showed good dimensional stability.

Processing Conditions for Seasoned-Dried Pacific Saury Treated with Liquid Smoke

  • Cha, Yong-Jun;Park, Sung-Young;Jeong, Eun-Jeong;Jung, Yeon-Jung;Kim, So-Jung
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.143-144
    • /
    • 2001
  • Among dark fleshed fishes, especially, Pacific saury has not well been used for processing because of its properties of weak tissue and high lipid content. If a simple and modified technique such as liquid smoking method for Pacific saury processing is applied successfully, it could give a lot of advantages on the field of fishery processing. In the aspects of effective utilization of dark fleshed fishes, therefore, we have attempted to process seasoned-dried Pacific saury with commercial liquid smoke. (omitted)

  • PDF