• 제목/요약/키워드: Tissue microarray

검색결과 186건 처리시간 0.03초

cDNA Microarray를 이용한 치주인대세포와 치은섬유아세포의 유전자 발현에 대한 연구 (A Comparative Study of Gene Expression Patterns of Periodontal Ligament Cells and Gingival Fibroblasts using the cDNA Microarray)

  • 전채영;박진우;이재목;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제34권1호
    • /
    • pp.205-221
    • /
    • 2004
  • Periodontal ligament(PDL) cells have been known as playing an important roles in periodontal regeneration and gingival fibroblasts are also important to periodontal regeneration by forming connective tissue attachment. There were rare studies about the gene expression patterns of PDL cells and gingival fibroblasts, therefore in this study, we tried cDNA microarray-based gene expression monitoring to explain the functional differences of PDL cells and gingival fibroblasts in vivo and to confirm the characteristics of PDL cells. Total RNA were extracted from PDL cells and gingival fibroblasts of same person and same passages, and mRNA were isolated from the total RNA using Oligotex mRNA midi kit(Qiagen) and then fluorescent cDNA probe were prepared. And microarray hybridization were performed. The gene expression patterns of PDL cells and gingival fibroblasts were quite different. About 400 genes were expressed more highly in the PDL cells than gingival fibroblasts and about 300 genes were more highly expressed in the gingival fibroblasts than PDL cells. Compared growth factor- and growth factor receptor-related gene expression patterns of PDL cells with gingival fibroblasts, IGF-2, IGF-2 associated protein, nerve growth factor, placental bone morphogenic protein, neuron-specific growth- associated protein, FGF receptor, EGF receptor-related gene and PDGF receptor were more highly expressed in the PDL cells than gingival fibroblasts. The results of collagen gene expression patterns showed that collagen type I, type III, type VI and type VII were more highly expressed in the PDL cells than gingival fibroblasts, and in the gingival fibroblasts collagen type V, XII were more highly expressed than PDL cells. The results of osteoblast-related gene expression patterns showed that osteoblast specific cysteine-rich protein were more highly expressed in the PDL cells than gingival fibroblasts. The results of cytoskeletal proteins gene expression patterns showed that a-smooth muscle actin, actin binding protein, smooth muscle myosin heavy chain homolog and myosin light chain were more highly expressed in the PDL cells than gingival fibrobalsts, and ${\beta}-actin$, actin-capping protein(${\beta}$ subunit), actin- related protein Arp3(ARP) and myosin class I(myh-1c) were more highly expressed in the gingival fibroblasts than PDL cells. Osteoprotegerin/osteoclastogenesis inhibitory factor(OPG/OCIF) was more highly expressed in the PDL cells than gingival fibroblasts. According to the results of this study, PDL cells and gingival fibroblasts were quite different gene expression patterns though they are the fibroblast which have similar shape. Therefore PDL cells & gingival fibroblasts are heterogeneous populations which represent distinct characteristics. If more studies about genes that were differently expressed in each PDL cells & gingival fibroblasts would be performed in the future, it would be expected that the characteristics of PDL cells would be more clear.

순위 비교를 기반으로 하는 다양한 유전자 개수로 이루어진 암 분류 결정 규칙의 생성 (Generating Rank-Comparison Decision Rules with Variable Number of Genes for Cancer Classification)

  • 윤영미;변상재;박상현
    • 정보처리학회논문지D
    • /
    • 제15D권6호
    • /
    • pp.767-776
    • /
    • 2008
  • 마이크로어레이 기술은 최근 실험적 분자생물학 분야에서 활발히 사용되고 있는 기술이다. 마이크로어레이 데이터는 한 번의 실험으로 수 만개의 유전자에 대한 발현값을 얻을 수 있으므로, 여러 질병의 발현형질을 연구하는데 매우 유용하게 사용된다. 마이크로어레이 데이터의 문제점은 참여하는 유전자의 수에 비해 참여하는 샘플(생물조직샘플)의 수가 매우 적고, 분류분석 기법을 사용하여 얻어진 분류자의 해석이 어렵다는 점이다. 본 연구에서는 위의 문제점을 해결하고자, 샘플 내 순위를 이용하여 동일한 생물학적 목적으로 수행된 공개 마이크로어레이 데이터를 통합하고, 순위 비교를 기반으로 하는 다양한 유전자 개수로 이루어진 암 분류 결정 규칙들로 이루어진 분류자를 제안한다. 본 분류자는 k개의 규칙으로 이루어진 앙상블 방법을 기반으로 하며, 하나의 규칙은 최대N개의 유전자, 관련유전자간의 순위비교 관계식, 판별클래스로 이루어져 있다. 하나의 규칙에 참여하는 유전자의 수를 다양하게 함으로써 좀더 신뢰성 높은 분류자를 생성할 수 있다. 또한 본 분류자는 생물학적 해석이용이하며, 분류자를 구성하는 유전자를 명확히 식별할 수 있고, 총 개수가 많지 않으므로 임상환경에서의 사용가능성도 생각해 볼 수 있다.

Expression Profiling of Genes involved in the Control of Pluripotency Using CDNA Microarray

  • Lee, Young-Jin;Hong, Seok-Ho;Nah, Hee-Young;Chae, Jai-Hyung;Jung, Ho-Sun;Kim, Beom-Sue;Kim, Chul-Geun
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2001년도 발생공학 국제심포지움 및 학술대회 발표자료집
    • /
    • pp.18-24
    • /
    • 2001
  • To identify genes implicated in the control of pluripotency as well as characteristics of stem cells, we analyzed expression profiles of genes derived from mouse morulas, blastocysts, embryonic stem cells, mesenchymal stem cells, and uterus tissue cDNA microarray. Comparative analyses of their expression profiles identified putative clones that expressed specifically in specific samples or not in a specific sample. The expression pattern of these candidate clones was analyzed using RT-PCR and non-radioactive in situ hybridization. Functional annotation of these clones on pluripotency and stem cells and molecular mechanisms underlying many facets of mammalian development and differentiation.

  • PDF

Expression Profiling of Genes involved in the Control of Pluripotency Using cDNA Microarray

  • Lee, Young-Jin;Hong, Seok-Ho;Nah, Hee-Young;Chae, Ji-Hyung;Jung, Ho-Sun;Kim, Beom-Sue;Kim, Chul-Geun
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.12-21
    • /
    • 2001
  • To identify genes implicated in the control of pluripotency as well as characteristics of stem cells, we analyzed expression profiles of genes derived from mouse morulas, blastocysts, embryonic stem cells, mesenchymal stem cells, and uterus tissue using cDNA microarray. Comparative analyses of their expression profiles identified putative clones that expressed specifically in specific samples or not in a specific sample. The expression pattern of these condidate clones was analyzed using RT-PCR and non-radioactive in situ hybridization. Functional annotation of these clones on pluripotency and stem cell plasticity is in ongoing. These studies may further our understanding on the nature of the stem cells and molecular mechanisms underlying many facets of mammalian development and differentiation.

  • PDF

Gene Expression Profile in Iprobenfos Exposed Medaka Fish by Microarray Analysis

  • Woo, Seon-Ock;Son, Sung-Hee;Ryu, Jae-Chun;Yum, Seung-Shic
    • Molecular & Cellular Toxicology
    • /
    • 제4권2호
    • /
    • pp.132-137
    • /
    • 2008
  • Differential gene expression profiling was carried out in the hepatic tissue of medaka fish, Oryzias latipes, after exposure to an organophosphorus pesticide (OPP), Iprobenfos (IBP), a widely used pesticide in agri- and fish-culture, using a medaka cDNA micro array. Twenty six kinds of differentially expressed candidate genes, with 15 and 11 induced and repressed in their gene expressions, respectively, were associated with cytoskeleton (3.8%), development (7.7%), immune (7.7%), metabolism (30.8%), nucleic acid/protein binding (42.3%) and reproduction (7.7%). Of these genes, changes at the transcription level of five were re-evaluated by real-time quantitative PCR (qRT-PCR). Considering the known function of authentic genes, the effects of IBP on the biological activity and pathological aspects in medaka fish were discussed. The identified genes could be used as molecular biomarkers for biological responses to OPPs contamination in an aquatic environment.

Molecular Cloning, Identification and Characteristics of a Novel Isoform of Carbamyl Phosphate Synthetase I in Human Testis

  • Huo, Ran;Zhu, Hui;Lu, Li;Ying, Lanlan;Xu, Min;Xu, Zhiyang;Li, Jianmin;Zhou, Zuomin;Sha, Jiahao
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.28-33
    • /
    • 2005
  • A gene coding a novel isoform of carbamyl phosphate synthetase I (CPS1) was cloned from a human testicular library. As shown by cDNA microarray hybridization, this gene was expressed at a higher level in human adult testes than in fetal testes. The full length of its cDNA was 3831 bp, with a 3149 bp open reading frame, encoding a 1050-amino-acid protein. The cDNA sequence was deposited in the GenBank (AY317138). Sequence analysis showed that it was homologous to the human CPS1 gene. The putative protein contained functional domains composing the intact large subunit of carbamoyl phosphate synthetase, thus indicated it has the capability of arginine biosynthesis. A multiple tissue expression profile showed high expression of this gene in human testis, suggesting the novel alternative splicing form of CPS1 may be correlated with human spermatogenesis.

Expression Profiling of Genes involved in the Control of Pluripotency Using cDNA Microarray

  • Lee, Young-Jin;Hong, Seok-Ho;Nah, Hee-Young;Chae, Ji-Hyung;Jung, Ho-Sun;Kim, Beom-Sue;Kim, Chul-Geun
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 발생공학 국제심포지움 및 학술대회 발표자료집
    • /
    • pp.18-24
    • /
    • 2001
  • To identify genes implicated in the control of pluripotency as well as characteristics of stem cells, we analyzed expression profiles of genes derived from mouse morulas, blastocysts, embryonic stem cells, mesenchymal stem cells, and uterus tissue using cDNA microarray. Comparative analyses of their expression profiles identified putative clones that expressed specifically in specific samples or not in a specific sample. The expression pattern of these candidate clones was analyzed using RT-PCR and non-radioactive in situ hybridization. Functional annotation of these clones on pluripotency and stem cell plasticity is in ongoing. These studies may further our understanding on the nature of the stem cells and molecular mechanisms underlying many facets of mammalian development and differentiation.

  • PDF

Gene Expression Profiling by Microarray during Tooth Development of Rats

  • Yoo, Hong-Il;Shim, Hae-Kyoung;Kim, Sun-Hun
    • International Journal of Oral Biology
    • /
    • 제40권3호
    • /
    • pp.151-159
    • /
    • 2015
  • Odontogenic cells express many genes spatiotemporally through complex and intricate processes during tooth formation. Therefore, investigating them during the tooth development has been an important subject for the better understanding of tooth morphogenesis. The present study was performed to identify the genetic profiles which are involved in the morphological changes during the different stages of rat tooth development using the Agilent Rat Oligonucleotide Microarrays. Morphologically, the maxillary 3rd molar germ at 10 days post-partum (dpp) was at the cap/bell stage. In contrast, the maxillary 2nd molar germ showed the root development stage. After microarray analysis, there were a considerable number of up- or down-regulated genes in the 3rd and the 2nd molar germ cells during tooth morphogenesis. Several differentially expressed genes for nerve supply were further studied. Among them, neuroligin 1 (Nlgn 1) was gradually downregulated during tooth development both at the transcription and the translation level. Also, Nlgn 1 was mostly localized in the dental sac, which is an important component yielding the nerve supply. This genetic profiling study proposed that many genes may be implicated in the biological processes for the dental hard tissue formation and, furthermore, may allow the identification of the key genes involved in the nerve supply to the dental sac.

Chlorosis of Ogura-CMS Brassica rapa is due to down-regulation of genes for chloroplast proteins

  • Jeong, Seok-Won;Yi, Hankuil;Song, Hayoung;Lee, Soo-Seong;Park, Youn-Il;Hur, Yoonkang
    • Journal of Plant Biotechnology
    • /
    • 제44권2호
    • /
    • pp.115-124
    • /
    • 2017
  • Cytoplasmic male sterility (CMS) is a maternally inherited trait leading to loss of the ability to produce fertile pollen and is extensively used in hybrid crop breeding. Ogura-CMS was originally generated by insertion of orf138 upstream of atp8 in the radish mitochondrial genome and transferred to Brassica crops for hybrid breeding. Gene expression changes by dysfunctional mitochondria in Ogura-CMS result in pollen developmental defects, but little is known about gene expression patterns in vegetative tissue. To examine the interaction between nuclear and organellar regulation of gene expression, microarray and subsequent gene expression experiments were conducted with leaves of $F_1$ hybrid Chinese cabbage derived from self-incompatible (SI) or Ogura-CMS parents (Brassica rapa ssp. pekinensis). Out of 24,000 genes deposited on a KBGP24K microarray, 66 genes were up-regulated and 26 genes were down-regulated by over 2.5 fold in the CMS leaves. Up-regulated genes included stress-response genes and mitochondrial protein genes, while genes for ascorbic acid biosynthesis and thylakoid proteins were down-regulated. Most of the major component genes for light reactions of photosynthesis were highly expressed in leaves of both SI and CMS plants, but most of the corresponding proteins were found to be greatly reduced in leaves of CMS plants, indicating posttranscriptional regulation. Reduction in thylakoid proteins and chlorophylls led to reduction in photosynthetic efficiency and chlorosis of Ogura-CMS at low temperatures. This research provides a foundation for studying chloroplast function regulated by mitochondrial signal and for using organelle genome introgression in molecular breeding.

Gene Expression Profiles Related with TCDD-Induced Hepatotoxicity

  • Ryu, Yeon-Mi;Kim, Ki-Nam;Kim, Yu-Ri;Sohn, Sung-Hwa;Seo, Sang-Hui;Lee, Seung-Ho;Kim, Hye-Won;Won, Nam-Hee;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제1권3호
    • /
    • pp.164-171
    • /
    • 2005
  • Toxicological studies have an object of detecting adverse effects of a chemical on an organism based on observed toxicity marker (i.e., serum biochemical markers and chemical-specific gene expression) or phenotypic outcome. To date, most toxicogenomic studies concentrated on hepatic toxicity. cDNA microarray analysis enable discrimination of the responses in animals exposed to different classes of hepatotoxicants. In an effort to further characterize the mechanisms of 2, 3, 7, 8,-Tetrachlorodibenzo-p-dioxin (TCDD or dioxin)-mediated toxicity, comprehensive temporal-responsive microarray analyses were performed on hepatic tissue from Sprague-Dawley rats treated with TCDD. Hepatic gene expression profiles were monitored using custom DNA chip containing 490 cDNA clones related with toxicology. Gene expression analysis identified 26 features which exhibited a significant change. In this study, we observed that the genes related with oxidative stress in rats exposed to Dioxin, such as CYPIIA3 and glutathione S-transferase, were up-regulated at 24hr after exposure. In this study, we carried out to discover novel evidence for previously unknown gene expression patterns related to mechanism of hepatic toxicity in rats exposed to dioxin, and to elucidate the effects of dioxin on the gene expression after exposure to dioxin.