• Title/Summary/Keyword: Tissue dose rate

Search Result 175, Processing Time 0.02 seconds

Characteristics of Tissue Dose of High Dose Rate Ir-192 Source Substitution for Co-60 Brachytherapy Source (코발트-60 선원 대체용 고선량률 Ir-192 선원의 조직선량특성)

  • 최태진;이호준;김옥배
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.259-266
    • /
    • 1998
  • To achieve the 2D dose distribution around the designed high dose rate Ir-192 source substitution for Co-60 brachytherapy source, we determined the exposure rate constant and tissue attenuation factors as a large depth as a 20 cm from source center. The exposure rate constant is used for apparent activity in designed source with self-absorption and encapsulation steel wall. The tissue dose delivered from the 4401 segments of 2.5 mm in a diameter and 2.5 mm height of disk-type source layer. In the experiments, the tissue attenuation factors include the tissue attenuation and multiple scattering in a medium surrounding the source. The fitted the polynomial regression with 4th order for the tissue attenuation factors are very closed to the experimental measurement data within ${\pm}$1% discrepancy. The Meisberger's constant showed the large uncertainty in large distance from source. The exposure rate constant 4.69 Rcm$^2$/mCi-hr was currently used for determination of apparent activity of source and air kerma strength was obtained 0.973 for tissue absorbed dose from the energy spectrum of Ir-192 source. In our experiments with designed high dose rate brachytherapy source, the apparent activity of Ir-192 source was delivered from the 54.6 % of actual physical source activity through the self-absorption and encapsulation wall attenuations. This paper provides the 2-dimensional dose tabulation from unit apparent activity in a water medium for dose planning includes the multiple scattering, source anisotropy effect and geometric factors.

  • PDF

Cancer Risk Assessment Due to Natural and Fallout Activity in Some Cities of Pakistan

  • Ahad A.;Matiullah Matiullah;Bhatti Ijaz A.;Orfi S.D.
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The measured mean activities of $^{226}Ra,\;^{232}Th,\;^{40}K\;and\;^{137}Cs$ in the soil of Bahawalpur, Bahawalnagar and Rahimyar Khan Bistricts were 32.9, 53.6, 647.4 and 1.8 Bq $kg^{-1}$. The average absorbed dose rate calculated from these activities was 74.3 nGy $h^{-1}$ and the mean annual effective dose rate was found to be 0.46 mSv $y^{-1}$. Absorbed doses to different body organs were derived from annual effective doses using tissue weighting factors. Radiation induced fatal cancer risks were assessed by using ICRP 60 Model. Estimations incurred 184deaths per year due to cancer.

Dose modeling and its Application of Ir-192 for substitution of Ralstron Brachytherapy source (Ralstron 선원대체형 Iridium-192 선원의 선량모델링과 응용)

  • 김옥배;최태진;김진희;이호준;박정호;김성규;조운갑;한현수
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • We designed high dose rate Ir-192 source which was prepared for substitute the Co-60 source in Ralstron unit (Simatsu, Japan) which is supplied for cervical cancer treatment. The source dimension is 1.5 mm in a diameter and 1.5mm thickness of cylinder and encapsulated with 3 mm diameter of stainless steel(SUS316L) to substituted for the Co-60 source size. The Ir-192 source was prepared the dose model for tissue dose computation through the experimental determination of apparent activity and applied the empirical tissue correction factors extended to 20cm distance. The tissue dose model was applied the 4.69 R/cm-mCi-hr gamma constant and the ratio of energy absorption coefficient of water to that of air showed 1.112 include filteration of the self-absorptions. In this experiments, we prepared the dose computation software to clinical usefulness.

  • PDF

High Dose Rate Interstitial Brachytherapy in Soft Tissue Sarcomas : Technical Aspect (연부조직종양에서 고선량율 조직내 방사선치료: 기술적 측면에서의 고찰)

  • Chun Mison;Kang Seunghee;Kim Byoung-Suck;Oh Young-Taek
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.43-51
    • /
    • 1999
  • Purpose : To discuss the technical aspect of interstitial brachytherapy including method of implant, insertion time of radioactive source, total radiation dose, and complication, we reviewed patients who had diagnoses of soft tissue sarcoma and were treated by conservative surgery, interstitial implant and external beam radiation therapy Materials and Methods : Between May 1995 and Dec. 1997, ten patients with primary or recurrent soft tissue sarcoma underwent surgical resection (wide margin excision) and received radiotherapy including interstitial brachytherapy. Catheters were placed with regular intervals of 1 ~l.5 cm immediately after tumor removal and covering the critical structures, such as neurovascular bundle or bone, with gelform, muscle, or tissue expander in the cases where the tumors were close to those structures. Brachytherapy consisted of high dose rate, iridium-192 implant which delivered 12~15 Gy to 1 cm distance from the center of source axis with 2~2.5 Gy/fraction, twice a day, starting on 6th day after the surgery, Within one month after the surgery, total dose of 50~55 Gy was delivered to the tumor bed with wide margin by the external beam radiotherapy. Results : All patients completed planned interstitial brachytherapy without acute side effects directly related with catheter implantation such as infection or bleeding. With median follow up duration of 25 months (range 12~41 months), no local recurrences were observed. And there was no severe form of chronic complication (RTOGIEORTC grade 3 or 4). Conclusion : The high dose rate interstitial brachytherapy is easy and safe way to minimize the radiation dose delivered to the adjacent normal tissue and to decrease radiation induced chronic morbidity such as fibrosis by reducing the total dose of external radiotherapy in the management of soft tissue sarcoma with conservative surgery.

  • PDF

The Dose Characteristics of Designed Ir-192 Micro-source for Brachytherapy (근접조사용 Ir-192 마이크로선원의 디자인과 선량 특성)

  • 최태진;김진희
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.81-89
    • /
    • 2003
  • The dose distributions of designed Ir-192 micro-source were investigated by dose computations which were accomplished by employing shape of encapsule material and thickness of the source for self-absorption. The computation dose derived from air-kerma rate (S$_{k}$ ) and dose rate constant (Λ) includes the anisotropy of dose distribution around the source. We got the dose rate constants in a water medium is 1.154 cGy h$^{-1}$ U$^{-1}$ . The size of the source was 0.5 mm in diameter and 3.5 mm in length and it was encapsuled in 1.1 mm$\Phi$${\times}$5.5 mm of stainless steel sealed with 0.3 mm of filter thickness. The tissue dose of reference point at 1.0 cm radial distance of the source axis was delivered 1.154 Uh$^{-1}$ (1.3167${\times}$10$^{-3}$ cGy/mCi-sec) from the S$_{k}$ 4.108U/mCi of Ir-192 source. The filtration effect contributed to air-kerma strength as exponential filtering effect of 86.2% in total attenuation, but self-absorption was 88.4% from radial dose distributions. In particular, the dose attenuations showed a rapid anisotropic distributions as 56% of reference dose along to $\pm$10 degrees from the tip of source axis and 50% for of that to source-cable direction. We persist in use the large diameter of applicator will avoid the dose anisotropy by the filtered attenuation effects along the axis of Ir-192 micro-source.

  • PDF

Pharmacokinetics rind Tissue Distribution of a Recombinant truman Erythropoietin, GC-rhEPO (유전자 재조합 사람형 erythropoietin, GC-rhEPO의 약물동태 및 조직분포)

  • 김선돈;한성규;이호성;김성남;정원휘;백대현;조은성;허재욱;류판동
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.171-178
    • /
    • 2000
  • To evaluate the pharmacokinetic properties and tissue distribution of a newly developed recombinant human erythropoietin (GC-rhEPO), we analyzed the plasma and tissue levels of erythropoietin by an ELISA after intravenous (IV) and subcutaneous (SC) adminstration to the male rats at the doses of 20, 100, 500 or 2,500 unit/kg. After single IV bolus injection of GC-rhEPO, the plasma concentration was rapidly increased and decreased with two phases with half-lives of 13.4 min and 2.94 hours. AUC was increased dose- dependently but plasma half-lives remained constant regardless of GC-rhEPO doses. Following SC administration, the plasma concentration increased slowly with half-life of 9.2 hours and reached peak at 8 hours. Mean residence time and bioavailability were 18.2 hours and 44%, respectively. After single IV dose of 100 unit/kg, tissue GC-rhEPO level was higher in bone marrow and spleen, while the depletion rate was slower in liver and bone marrow, indicating the higher affinity of GC-rhEPO to bone marrow. Taken together, the experimental results indicate that GC-rhEPO contained the typical pharmacokinetic properties and the tissue distribution patterns inherent to human erythropoietin.

  • PDF

Does Low-Dose Heparin Have a Significant Role in Free Flap Surgery?

  • An, Mun-Young;Shin, Jin Yong;Lee, Young-Keun;Sabbagh, M. Diya;Roh, Si-Gyun;Lee, Nae-Ho
    • Archives of Craniofacial Surgery
    • /
    • v.18 no.3
    • /
    • pp.162-165
    • /
    • 2017
  • Background: It is controversial issue that heparin decreases thrombosis for microsurgical anastomosis, and its effective role is under discussion. This study is for proving whether low-dose heparin is preventing thrombosis in free flap reconstruction. Methods: Through chart reviews of 134 patients, using low-dose heparin for free tissue transfer from 2011 to 2016, retrospective analysis was performed. 33 patients received low-dose heparin therapy after surgery. And 101 patients received no-heparin therapy. Complications included flap necrosis, hematoma formation, dehiscence and infection. Results: In no-heparin therapy group, comparing the flap necrosis revealed 16 cases (15.84%). And, flap necrosis was 6 cases (18.18%) in low-dose heparin therapy group. The statistical analysis of flap necrosis rate showed no significant difference (p=0.75). The results showed that there was no significant difference of flap necrosis rate between two groups. Conclusion: In this study, patients in the low-dose heparin group had no significantly lower rates of flap failure compared with no-heparin group. This suggests that low-dose heparin may not prevent thrombosis and subsequent flap failure to a significant extent.

Brachytherapy for Head and Neck Cancer (두경부암의 근접방사선 치료)

  • Yoo Seong-Yul
    • Korean Journal of Head & Neck Oncology
    • /
    • v.7 no.1
    • /
    • pp.3-9
    • /
    • 1991
  • Brachytherapy is a method of radiotherapy in advantage to achieve better local control with minimum radiation toxicity in comparison with external irradiation because radiation dose is distributed according to the inverse square low of gamma-ray emitted from the implanted sources. The main characteristics of brachytherapy are delivering of higher dose to target volume shortening of total treatment period and sparing of normal tissue. Recent development of iridium ribbons for low dose rate implant provides improvement of technology of brachytherapy in terms of safety and efficiency. High dose rate method. on the other hand, is effective to avoid unnecessary expoure of medical personnel.

  • PDF

Measurement of Absorbed Dose at the Tissue Surface from a Plain $^{90}Sr+^{90}Y$ Beta Sources (조직 표면에서의 베타선 흡수선량 측정)

  • Hah, Suck-Ho;Kim, Jeong-Mook;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.2
    • /
    • pp.17-26
    • /
    • 1991
  • Beta ray $(^{90}Sr+^{90}Y)$ absorbed dose at tissue surface was measured from the distance of 30cm by use of extrapolation chamber. In the measurement, following factors were considered: effective area of collecting electrode, polarity effect, ion recombination and window attenuation. The measured absorbed dose rate at tissue surface was $1.493{\mu}Gy/sec$ with ${\pm}2.9%$.

  • PDF

Optimization of Dose Distribution for High Dose Rate Intraluminal Therapy (고선량율 관내 방사선치료를 위한 종양선량분포의 최적화에 대한 연구)

  • Chu, Sung-Sil;Kim, Gwi-Eon;Loh, Juhn-Kyu
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.243-252
    • /
    • 1994
  • The use of high dose rate remote afterloading system for the treatment of intraluminal lesions necessitates the need for a more accurate of dose distributions around the high intensity brachytherapy sources, doses are often prescribed to a distance of few centimeters from the linear source, and in this range the dose distribution is very difficult to assess. Accurated and optimized dose calculation with stable numerical algorithms by PC level computer was required to treatment intraluminal lesions by high dose rate brachytherapy system. The exposure rate from sources was calculated with Sievert integral and dose rate in tissue was calculated with Meisberger equation, An algorithm for generating a treatment plan with optimized dose distribution was developed for high dose rate intraluminal radiotherapy. The treatment volume becomes the locus of the constrained target surface points that is the specified radial distance from the source dwelling positions. The treatment target volume may be alternately outlined on an x-ray film of the implant dummy sources. The routine used a linear programming formulism to compute which dwell time at each position to irradiate the constrained dose rate at the target surface points while minimizing the total volume integrated dose to the patient. The exposure rate and the dose distribution to be confirmed the result of calculation with algorithm were measured with film dosimetry, TLD and small size ion chambers.

  • PDF