• 제목/요약/키워드: Tissue adhesion

검색결과 318건 처리시간 0.029초

방사선 기반에 의한 기계적으로 공극을 증가시킨 젤라틴이 도입된 혈관조직공학용 PLLA/PLCL 나노섬유 지지체의 개발 (Development of Mechanically Expanded Gelatin-AAc-PLLA/PLCL Nanofibers for Vascular Tissue Engineering by Radiation-based Techniques)

  • 정진오;정성린;서다은;박종석;권희정;안성준;신영민;임윤묵
    • 방사선산업학회지
    • /
    • 제9권4호
    • /
    • pp.171-180
    • /
    • 2015
  • Vascular tissue engineering has been accessed to mimic the natural composition of the blood vessel containing intima, media, and adventitia layers. We fabricated mechanically expanded PLLA/PLCL nanofibers using electrospinning and UTM. The pore size of the meshes was increased the gelatin immobilized AAc-PLLA/PLCL nanofibers ($203.30{\pm}49.62microns$) than PLLA/PLCL nanofibers ($59.99{\pm}8.66microns$) after mechanical expansion. To increase the cell adhesion and proliferation, we introduced carboxyl group, and gelatin was conjugated on them. The properties of the PLLA/PLCL nanofibers were analyzed with SEM, ATR-FTIR, TBO staining, and water contact angle measurement, general cell responses on the PLLA/PLCL nanofibers such as adhesion, proliferation, and infiltration were also investigated using smooth muscle cell (SMC). During the SMC culture, the initial viability of the cells was significantly increased on the gelatin immobilized AAc-PLLA/PLCL nanofibers, and infiltration of the cells was also enhanced on them. Therefore, gelatin immobilized AAc-PLLA/PLCL nanofibers and mechanically expanded meshes may be a good tool for vascular tissue engineering application.

Cross-Linked Collagen Scaffold from Fish Skin as an Ideal Biopolymer for Tissue Engineering

  • Biazar, Esmaeil;Kamalvand, Mahshad;Keshel, Saeed Heidari;Pourjabbar, Bahareh;Rezaei-Tavirani, Mustafa
    • 한국재료학회지
    • /
    • 제32권4호
    • /
    • pp.186-192
    • /
    • 2022
  • Collagen is one of the most widely used biological materials in medical design. Collagen extracted from marine organisms can be a good biomaterial for tissue engineering applications due to its suitable properties. In this study, collagen is extracted from fish skin of Ctenopharyngodon Idella; then, the freeze drying method is used to design a porous scaffold. The scaffolds are modified with the chemical crosslinker N-(3-Dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) to improve some of the overall properties. The extracted collagen samples are evaluated by various analyzes including cytotoxicity test, SDS-PAGE, FTIR, DSC, SEM, biodegradability and cell culture. The results of the SDS-PAGE study demonstrate well the protein patterns of the extracted collagen. The results show that cross-linking of collagen scaffold increases denaturation temperature and degradation time. The results of cytotoxicity show that the modified scaffolds have no toxicity. The cell adhesion study also shows that epithelial cells adhere well to the scaffold. Therefore, this method of chemical modification of collagen scaffold can improve the physical and biological properties. Overall, the modified collagen scaffold can be a promising candidate for tissue engineering applications.

Fiber Reinforced Inlay Adhesion Bridge

  • Cho, Lee-Ra;Yi, Yang-Jin;Song, Ho-Yong
    • 대한치과보철학회지
    • /
    • 제38권3호
    • /
    • pp.366-374
    • /
    • 2000
  • FRC/ceromer system provides the clinician with a durable, flexible, and esthetic alternative to conventional porcelain fused to metal crowns. FRC is the matrix which is silica-coated and embedded in a resin matrix. The ceromer material which is a second generation indirect composite resin contains silanized, microhybrid inorganic fillers embedded in a light-curing organic matrix. FRC/ceromer restoration has a several advantages: better shock absorption, less wear of occluding teeth, translucency, color stability, bonding ability to dental hard tissues, and resiliency. It has versatility of use including inlay, onlay, single crown, and esthetic veneers. With adhesive technique, it can be used for single tooth replacement in forms of inlay adhesion bridge. In single tooth missing case, conventional PFM bridge has been used for esthetic restoration. However, this restoration has several disadvantages such as high cost, potential framework distortion during fabrication, and difficulty in repairing fractures. Inlay adhesion bridge with FRC/ceromer would be a good alternative treatment plan. This article describes a cases restored with Targis/Vectris inlay adhesion bridge. Tooth preparation guide, fabrication procedure, and cementation procedure of this system will be dealt. The strength/weakness of this restoration will be mentioned, also. If it has been used appropriately in carefully selected case, it can satisfy not only dentist's demand of sparing dental hard tissue but also patient's desire of seeking a esthetic restorations with a natural appearance.

  • PDF

Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration

  • Chung, Joo-Ryun;Choi, Jong-Won;Fiorellini, Joseph P.;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제17권3호
    • /
    • pp.191-198
    • /
    • 2017
  • Background: For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Method: In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results: The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusion: Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits.

Urokinase 와 Dextran 40 을 이용한 심막유착 방지에 관한 실험적 연구 (Experimental Studies for the Prevention of Pericardial Adhesion with Urokinase and Dextran 40)

  • 김병주;김세화;이홍균
    • Journal of Chest Surgery
    • /
    • 제19권2호
    • /
    • pp.225-231
    • /
    • 1986
  • Pericardial adhesions following open heart surgery pose a special problems, increasing the risk of cardiac reoperation because of the danger of damaging the heart, coronary artery and veins, or grafts and also the fibrous tissue may obliterate the pericardial space and eventually constrict the heart. This study was undertaken to evaluate the effect of intrapericardial urokinase and dextran 40 on the formation of pericardial adhesions in an animal model. latrogenic traumas on the pericardium were surgically induced in 30 rabbits, simulating injuries possible during actual surgery. In all rabbits, blood [1 ml] was obtained from an ear vessel and injected into the pericardium. Control group of ten rabbits did not receive any further medication, urokinase group of ten received 15, 000-20, 000 IU of urokinase, and remained ten received 1 ml of 10% dextran 40. All rabbits were sacrificed at 4 weeks. At autopsy, the development of adhesions were graded as none [Grade I], minimal [Grade II], moderate [Grade III], and severe [Grade IV]. Histological studies of the parietal pericardium and epicardium were performed. The results were as follows: 1. Group 1[Control group] showed minimal adhesion in 40%, moderate in 50%, and severe in 10% of the group. Sharp dissections were necessary in 60% of adhesions. 2. Group II [Dextran group] showed no adhesions in 20%, minimal in 60%, and moderate in 20% of the group. 3. Group III [Urokinase group] showed no adhesions in 40%, minimal in 40%, and moderate in 20% of the group. Considering in this group, the adhesion activity was significantly suppressed [60% adhesions] compared to the control group [100% adhesions] [P < 0.05]. 4. Histological findings revealed mild serosal fibrosis in none adherent group, loose fibrous connections between two layers of pericardium in minimal adhesion group, tight fibrous connections in moderate adhesion group, and marked fibrous thickening and close attachment of two surfaces were noted in severe adhesion group. These data have revealed the decreased incidence of pericardial adhesions with urokinase and dextran 40.

  • PDF

메카니즘 해석을 통해 바라본 홍합접착제 연구동향 (Brief Review on Mussel Adhesives by Evaluating Its Adhesion and Cohesion Mechanisms)

  • 강병언;이재성;오경석
    • 한국응용과학기술학회지
    • /
    • 제35권1호
    • /
    • pp.141-150
    • /
    • 2018
  • 홍합 족사 단백질은 수분이 있는 표면에서도 강한 접착력을 가진다. 홍합 연구에 대표가 되는 marine blue mussel을 통해 9가지 단백질의 구조와 기능이 보고되었으며, 이 단백질들은 홍합 족사를 구성하는 실(threads)과 플래크(plaques)를 형성한다. 알려진 바에 의하면, 히드록시기 2개가 포함된 카테콜 기능기를 가진 DOPA 물질이 계면접착(adhesion)과 내부결합(cohesion) 과정에서 중요한 역할을 하는 것으로 알려져 있다. 본 논문에서는, 최근 10년간 활발히 연구된 계면접착과 내부응력 메카니즘에 대해 소개하고 평가하였다. 또한, 접착력을 갖는 기능기를 활용한 발전된 접착소재의 개발, 바이오접착제와 의료용 소재로 응용가능성에 대해 살펴보았다. 홍합 단백질이 다시 관심의 대상이 되면서, 바이오소재로 사용될 가능성이 커지고 있음이 주목된다.

접착형 구조 금 인레이의 접착 형태, 강도 및 파절 양태에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON ADHESION PATTERN, ADHESION STRENGTH AND FRACTURE PATTERN OF THE ADHESIVE CAST GOLD INLAY)

  • 한승렬;홍찬의
    • Restorative Dentistry and Endodontics
    • /
    • 제19권1호
    • /
    • pp.64-72
    • /
    • 1994
  • Zinc Phosphate Cement hand been used for about more than 100 years in luting of cast gold inlay. But many scientists had been trying to develop the new form of luting agent because the ZPC hand shown the lack of adhesiveness on the tooth structure and the toxicity to the pulp tissue. Recently many researches about the surface treatment of the cast body are being done to increase the adhesion of cement to it. The conventional Class I gold inlays were fabricated in the 20 permanent molars. After the internal surface of the cast body was sandblasted with $Al_2O_3$ particles and was tin-plated, the inlays were cemented with adhesive cement [G I cement and resin cement(Super-Bond & $Panavia_{EX}$)] and the evaluation on the adhesion pattern, adhesive strength and the fracture pattern of the adhesive cast gold inlay was compared to that of the cast gold inlay cemented conventionally with ZPC. The results were as follows : 1. The surface roughness of the cast body was increased significantly after sandblasting with the $Al_2O_3$ particles and the tin oxide layer, which was consisted of round particles, came into being. 2. The bond strength was in the order of Super-Bond, ZPC, Fuji I, $Panavia_{EX}$ group. The group cemented with Super-Bond showed statistically greater strength than the other groups(p<0.05). 3. The group cemented with ZPC was fallen apart by principal adhesion failure and that with Fuji I was by complete adhesion failure. But the group with Super-Bond showed pricncipal cohesive failure pattern and in the group with $Panavia_{EX}$, complete cohesive fracture pattern was shown and small protion of tooth structure was fractured out with cast body and the fractured surface showed the figure just as the enamel prism. 4. Various gaps were shown at the pulpal side regardless of little gap at the side walls of the cavity in all groups. Only the Super-Bond was attached to the tooth structure and the other cements were detached from both the tooth and the cast body.

  • PDF

구개편도 및 인두편도에서 혈관내피성 접착분자의 발현에 관한 연구 (The Study on the Expression of Vascular Endothelial Adhesion Molecule in Palatine and Pharyngeal Tonsil)

  • 조진희;장한성;원유성;이수진;윤희로;서병도
    • 대한기관식도과학회지
    • /
    • 제5권2호
    • /
    • pp.174-181
    • /
    • 1999
  • The palatine tonsils(tonsils) and pharyngeal tonsils(adenoids) are situated at the entrance of the respiratory and alimentary tracts and represent the first site of contact with a variety of microorganisms and other antigens present in food and inhaled air. They are known as lymphoid organs carrying out the function of cellular and humoral immunity, and so they form a local protective barrier. And the expression of the vascular endothelial adhesion molecules is known to play an important role for the inflammatory reaction in tonsils and adenoids as well as in other inflammatory tissues, by binding with the receptors on the surface of leukocytes. But although several scientific hypotheses on the role of these lympoid tissues have been suggested, their complete functions have remained unknown. The purpose of this study is to present an basic data of the knowledge on the immunologic physiology of the tonsils and adenoids and their role as active immunologic organs that reinforce the mucosal immunity of the entire upper aerodigestive tract. We examined 16 human tonsils and adenoids and the expression of three endothelial adhesion molecules, vascular endothelial adhesion molecule-1(VCAM-1), intracellular adhesion molecule-1(ICAM-1), and E-selection, in tissue sections using immunohistochemistry. We used the inferior turbinate mucosa obtained from 9 patients getting septal surgery as a control group. The expressions of vascular endothelial adhesion molecule-1(VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) were significantly higher in the tonsils and adenoids. But respectively, there were no significant differences between the tonsils and adenoids. The expression of E-selection was significant higher in the tonsils, but not in the adenoids. We observed that tonsils and adenoids showed significantly higher expressions of vascular endothelial adhesion molecule-1(VCAM-1), intracellular adhesion molecule-1(ICAM-1), and E-selection (in the case of E-selection, only in the tonsils). We propose that these adhesion molecules play an important role for the immunologic reaction by the transendothelial migration of lymphocytes and binding with the receptors on the surface of leukocytes.

  • PDF

저산소증에 의한 활막 섬유모세포의 ICAM-1 발현에 대한 항산화제의 영향 (Effects of Antioxidant on the Hypoxia-induced Expression of ICAM-1 in Cultured Human Synovial Fibroblasts)

  • 김정렬;류완희
    • IMMUNE NETWORK
    • /
    • 제2권1호
    • /
    • pp.25-34
    • /
    • 2002
  • Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial hyperplasia and joint destruction. The synovial fibroblasts express cell adhesion molecules and have a role in adhesive interation with inflammatory cells in synovial tissue. It has been suggested that hypoxic conditioins are thought to exist in arthritic joints, and several studies indicate that reactive oxygen species (ROS) produced in hypoxic condition can initiate events that lead to pro-adhesive changes via increased expression of adhesion molecules. So, this study wsa designed to examine whether antioxidant can inhibit hypoxia-induced expression of ICAM-1 in cultured human synovial fibroblasts. Methods: Synovial fibroblasts were isolated from synovial tissue in patients with RA and cultured at hypoxic condition. Antioxidant, PDTC (pyrrolidine dithiocarbamate) were pre-treated for an hour before the hypoxic culture and synovial fibroblasts were harvested at 0, 6, 12, 24, 48 hours time points. Cell surface ICAM-1 expression in synovial fibroblasts was examined by the flow cytometric analysis. To analyse the expression of ICAM-1 mRNA, reverse-transcriptase polymerase chain reaction (RT-PCR) was performed. The levels of cytokines in culture supernatants were measured by ELISA, and activation of NF-${\kappa}B$ was analysed by electrophoretic mobility shift assay. The adhesive reaction between synovial fibroblasts and lymphocytes was assayed by measurement of fluorescent intensity of BCECF-AM in lymphocytes. Results: Hypoxic stimuli up-regulated the ICAM-1 expression as well as the adhesive interaction of human synvial fibroblasts to lymphocytes in a time-dependent manner, and PDTC inhibited hpyoxia-induced ICAM-1 expression and cell-cell interaction. PDTC also inhibited the hypoxia-induced activation of intracellular transcription factor, NF-${\kappa}B$. PDTC decreased the amount of hypoxia-induced production of IL-$1{\beta}$ and TNF-${\alpha}$. Conclusion: These studies demonstrate that PDTC inhibit the hypoxia-induced expression of the adhesion molecule, ICAM-1 and activation of NF-${\kappa}B$ in cultured human synovial fibroblasts.