• Title/Summary/Keyword: Tissue Phantom

Search Result 320, Processing Time 0.03 seconds

Comparison of Virtual Wedge versus Physical Wedge Affecting on Dose Distribution of Treated Breast and Adjacent Normal Tissue for Tangential Breast Irradiation (유방암의 방사선치료에서 Virtual Wedge와 Physical Wedge사용에 따른 유방선량 및 주변조직선량의 차이)

  • Kim Yeon-Sil;Kim Sung-Whan;Yoon Sel-Chul;Lee Jung-Seok;Son Seok-Hyun;Choi Ihl-Bong
    • Radiation Oncology Journal
    • /
    • v.22 no.3
    • /
    • pp.225-233
    • /
    • 2004
  • Purpose: The Ideal breast irradiation method should provide an optimal dose distribution In the treated breast volume and a minimum scatter dose to the nearby normal tissue. Physical wedges have been used to Improve the dose distribution In the treated breast, but unfortunately Introduce an Increased scatter dose outside the treatment yield, pavllculariy to the contralateral breast. The typical physical wedge (FW) was compared with 4he virtual wedge (VW) to do)ermine the difference In the dose distribution affecting on the treated breast and the contralateral breast, lung, heart and surrounding perlpheral soft tissue. Methods and Materials: The data collected consisted of a measurement taken with solid water, a Humanoid Alderson Rando phantom and patients. The radiation doses at the ipsllateral breast and skin, contralateral breast and skin, surrounding peripheral soft tissue, and Ipsllateral lung and heart were compared using the physical wedge and virtual wedge and the radiation dose distribution and DVH of the treated breast were compared. The beam-on time of each treatment technique was also compared Furthermore, the doses at treated breast skin, contralateral breast skin and skin 1.5 cm away from 4he field margin were also measured using TLD in 7 patients of tangential breast Irradiation and compared the results with phantom measurements. Results: The virtual wedge showed a decreased peripheral dose than those of a typical physical wedge at 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$, and 60$^{\circ}$. According to the TLD measurements with 15$^{\circ}$ and 30$^{\circ}$ virtual wedge, the Irradiation dose decreased by 1.35$\%$ and 2.55$\%$ In the contralateral breast and by 0.87$\%$ and 1.9$\%$ In the skin of the contralateral breast respectively. Furthermore, the Irradiation dose decreased by 2.7$\%$ and 6.0$\%$ in the Ipsllateral lung and by 0.96$\%$ and 2.5$\%$ in the heart. The VW fields had lower peripheral doses than those of the PW fields by 1.8$\%$ and 2.33$\%$. However the skin dose Increased by 2.4$\%$ and 4.58$\%$ In the Ipsliateral breast. VW fields, In general, use less monitor units than PW fields and shoriened beam-on time about half of PW. The DVH analysis showed that each delivery technique results In comparable dose distribution in treated breast. Conclusion: A modest dose reduction to the surrounding normal tissue and uniform target homogeneity were observed using the VW technique compare to the PW beam in tangential breast Irradiation The VW field is dosmetrically superlor to the PW beam and can be an efficient method for minimizing acute, late radiation morbidity and reduce 4he linear accelerator loading bV decreasing the radiation delivery time.

NOVEL INSULATED MONOPOLE ANTENNA WITH CAP AND BALUN FOR CONFINED HYPERTHERMIA (캡과 발룬을 사용한 암세포의 열 치료용 절연 모노폴 안테나)

  • 권주남;양동일;나정웅;김용철;이규호
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.181-184
    • /
    • 2001
  • An insulated monopole antenna having a balun and a cap at the coaxial feeder and the monopole end, respectively, may be designed to have a well-confined uniform heating Pattern as well as the satisfactory impedance matching at the input port of the antenna. Measurements by using the infra red camera in the biologically equivalent tissue phantom shows that the highest temperature is 46 degree in centigrade at the 20 watts input Power for 2 minutes and input reflection less than -30 dB at 2450 MHz.

  • PDF

A Study on Characteristics Analysis of Multichannel Filter Module for Near-infrared Fluorescence Imaging (근적외선 형광 이미징 영상 구현을 위한 다채널 필터 모듈 특성분석 연구)

  • Choi, Jinsoo;Cho, Sang Uk;Kim, Doo-In;Lee, Hak-Guen;Choi, Hak Soo;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.29-34
    • /
    • 2016
  • In this study, development of multichannel filter module and characteristic evaluation for bio imaging were studied. The filter module was fabricated in order to realize near infrared fluorescence imaging of 700 nm and 800 nm wavelength ranges, and contrast imaging analysis for characteristic evaluation of the filter module was studied through signal to back ground ratio (SBR), controlled by parameters such as magnification, exposure, gain. Furthermore, phantoms, which are biomimetic tissue with equal optical properties of kidney and liver, were fabricated to study characteristics of both filter module depending on thickness and exposure amount of light source for bio imaging analysis. The fabricated filter module has more than 4 of SBR difference despite changes of magnification, exposure, gain, and in the case of the kidney phantom and the liver phantom, contrast imaging of more than 4 of SBR was confirmed on 50 mA, 60 mA exposure amount of light source respectively.

Design of Gastrointestinal Diagnosis System based on Ultrasonic Response Characteristics (초음파 응답특성 분석에 의한 위장 경화 진단시스템의 설계)

  • Lim, Do-Hyung;Kim, Eun-Geun;Lee, Gyoun-Jung;Park, Won-Pil;Kim, Han-Sung;Shin, Tae-Min;Choi, Seo-Hyung;Lee, Yong-Heum
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.250-257
    • /
    • 2007
  • Functional gastrointestinal disorders affect millions of people of all age regardless of race and sex. There are, however, rare diagnostic methods for the functional gastrointestinal disorders because functional disorders show no evidence of organic and physical causes. Our research group identified recently that the gastrointestinal tract well in the patients with the functional gastrointestinal disorders becomes more rigid than healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. The aim is, therefore, to develop a diagnostic method for the functional gastrointestinal disorders based on quantitative measurement of the rigidity of the gastrointestinal tract well using ultrasound technique. For this purpose, a preliminary ultrasound diagnostic system was developed and verified through phantom tests. The system consisted of transmitter, ultrasonic transducer, receiver, TGC, and CPLD, and verified via a phantom test. For the phantom test, ten soft-tissue specimens were harvested from porcine. Five of them were then treated chemically to mimic a rigid condition of gastrointestinal tract well, which was induced by functional gastrointestinal disorders. Additionally, the specimens were tested mechanically to identify if the mimic was reasonable. The customized ultrasound system was finally verified through application to human subjects with/without functional gastrointestinal disorders(Normal and Patient Groups). It was identified from the mechanical test that the chemically treated specimens were more rigid than normalspecimen. This finding was favorably compared with the result obtained from the phantom test. The phantom test also showed that ultrasound system well described the specimen geometric characteristics and detected an alteration in the specimens. The maximum amplitude of the ultrasonic reflective signal in the rigid specimens $(0.2{\pm}0.1Vp-p)$ at the interface between the fat and muscle layers was explicitly higher than that in the normal specimens $(0.1{\pm}0.0Vp-p)$ (p<0.05). Clinical tests using our customized ultrasound system for human subject showed that the maximum amplitudes of the ultrasonic reflective signals nea. to the gastrointestinal tract well for the patient group$(2.6{\pm}0.3Vp-p)$ were generally higher than those in normal group$(0.1{\pm}0.2Vp-p)$ (p<0.05). These results suggest that newly designed diagnostic system based on ultrasound technique may diagnose enough the functional gastrointestinal disorders.

Optimal Localization through DSA Distortion Correction for SRS

  • Shin, Dong-Hoon;Suh, Tae-Suk;Huh, Soon-Nyung;Son, Byung-Chul;Lee, Hyung-Koo;Choe, Bo-Young;Shinn, Kyung-Sub
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2000
  • In Stereotactic Radiosurgery (SRS), there are three imaging methods of target localization, such as digital subtraction Angiography (DSA), computed tomography (CT), magnetic resonance imaging (MRI). Especially, DSA and MR images have a distortion effect generated by each modality. In this research, image properties of DSA were studied. A first essential condition in SRS is an accurate information of target locations, since high dose used to treat a patient may give a complication on critical organ and normal tissue. Hut previous localization program did not consider distortion effect which was caused by image intensifier (II) of DSA. A neurosurgeon could not have an accurate information of target locations to operate a patient. In this research, through distortion correction, we tried to calculate accurate target locations. We made a grid phantom to correct distortion, and a target phantom to evaluate localization algorithm. The grid phantom was set on the front of II, and DSA images were obtained. Distortion correction methods consist of two parts: 1. Bilinear transform for geometrical correction and bilinear interpolation for gray level correction. 2. Automatic detection method for calculating locations of grid crosses, fiducial markers, and target balls. Distortion was corrected by applying bilinear transform and bilinear interpolation to anterior-posterior and left-right image, and locations of target and fiducial markers were calculated by the program developed in this study. Localization errors were estimated by comparing target locations calculated in DSA images with absolute locations of target phantom. In the result, the error in average with and without distortion correction is $\pm$0.34 mm and $\pm$0.41 mm respectively. In conclusion, it could be verified that our localization algorithm has an improved accuracy and acceptability to patient treatment.

  • PDF

Quantitative Comparisons in $^{18}F$-FDG PET Images: PET/MR VS PET/CT ($^{18}F$-FDG PET 영상의 정량적 비교: PET/MR VS PET/CT)

  • Lee, Moo Seok;Im, Young Hyun;Kim, Jae Hwan;Choe, Gyu O
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.68-80
    • /
    • 2012
  • Purpose : More recently, combined PET/MR scanners have been developed in which the MR data can be used for both anatometabolic image formation and attenuation correction of the PET data. For quantitative PET information, correction of tissue photon attenuation is mandatory. The attenuation map is obtained from the CT scan in the PET/CT. In the case of PET/MR, the attenuation map can be calculated from the MR image. The purpose of this study was to assess the quantitative differences between MR-based and CT-based attenuation corrected PET images. Materials and Methods : Using the uniform cylinder phantom of distilled water which has 199.8 MBq of $^{18}F$-FDG put into the phantom, we studied the effect of MR-based and CT-based attenuation corrected PET images, of the PET-CT using time of flight (TOF) and non-TOF iterative reconstruction. The images were acquired from 60 minutes at 15-minute intervals. Region of interests were drawn over 70% from the center of the image, and the Scanners' analysis software tools calculated both maximum and mean SUV. These data were analyzed by one way-anova test and Bland-Altman analysis. MR images are segmented into three classes(not including bone), and each class is assigned to each region based on the expected average attenuation of each region. For clinical diagnostic purpose, PET/MR and PET/CT images were acquired in 23 patients (Ingenuity TF PET/MR, Gemini TF64). PET/CT scans were performed approximately 33.8 minutes after the beginnig of the PET/MR scans. Region of interests were drawn over 9 regions of interest(lung, liver, spleen, bone), and the Scanners' analysis software tools calculated both maximum and mean SUV. The SUVs from 9 regions of interest in MR-based PET images and in CT-based PET images were compared. These data were analyzed by paired t test and Bland-Altman analysis. Results : In phantom study, MR-based attenuation corrected PET images generally showed slightly lower -0.36~-0.15 SUVs than CT-based attenuation corrected PET images (p<0.05). In clinical study, MR-based attenuation corrected PET images generally showed slightly lower SUVs than CT-based attenuation corrected PET images (excepting left middle lung and transverse Lumbar) (p<0.05). And percent differences were -8.01.79% lower for the PET/MR images than for the PET/CT images. (excepting lung) Based on the Bland-Altman method, the agreement between the two methods was considered good. Conclusion : PET/MR confirms generally lower SUVs than PET/CT. But, there were no difference in the clinical interpretations made by the quantitative comparisons with both type of attenuation map.

  • PDF

Dose Verification Using Pelvic Phantom in High Dose Rate (HDR) Brachytherapy (자궁경부암용 팬톰을 이용한 HDR (High dose rate) 근접치료의 선량 평가)

  • 장지나;허순녕;김회남;윤세철;최보영;이형구;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • High dose rate (HDR) brachytherapy for treating a cervix carcinoma has become popular, because it eliminates many of the problems associated with conventional brachytherapy. In order to improve the clinical effectiveness with HDR brachytherapy, a dose calculation algorithm, optimization procedures, and image registrations need to be verified by comparing the dose distributions from a planning computer and those from a phantom. In this study, the phantom was fabricated in order to verify the absolute doses and the relative dose distributions. The measured doses from the phantom were then compared with the treatment planning system for the dose verification. The phantom needs to be designed such that the dose distributions can be quantitatively evaluated by utilizing the dosimeters with a high spatial resolution. Therefore, the small size of the thermoluminescent dosimeter (TLD) chips with a dimension of <1/8"and film dosimetry with a spatial resolution of <1mm used to measure the radiation dosages in the phantom. The phantom called a pelvic phantom was made from water and the tissue-equivalent acrylic plates. In order to firmly hold the HDR applicators in the water phantom, the applicators were inserted into the grooves of the applicator holder. The dose distributions around the applicators, such as Point A and B, were measured by placing a series of TLD chips (TLD-to-TLD distance: 5mm) in the three TLD holders, and placing three verification films in the orthogonal planes. This study used a Nucletron Plato treatment planning system and a Microselectron Ir-192 source unit. The results showed good agreement between the treatment plan and measurement. The comparisons of the absolute dose showed agreement within $\pm$4.0 % of the dose at point A and B, and the bladder and rectum point. In addition, the relative dose distributions by film dosimetry and those calculated by the planning computer show good agreement. This pelvic phantom could be a useful to verify the dose calculation algorithm and the accuracy of the image localization algorithm in the high dose rate (HDR) planning computer. The dose verification with film dosimetry and TLD as quality assurance (QA) tools are currently being undertaken in the Catholic University, Seoul, Korea.

  • PDF

Quantitative study of acupuncture manipulation of lifting-thrusting using an needle insertion-measurement system in phantom tissue

  • Lee, Soo-Yoon;Son, Young-Nam;Choi, In-Hwa;Shin, Kyung-Min;Kim, Kap-Sung;Lee, Seung-Deok
    • The Journal of Korean Medicine
    • /
    • v.35 no.4
    • /
    • pp.74-82
    • /
    • 2014
  • Objectives: Quantification, objectification, and standardization of lifting-thrusting manipulation are important issues in traditional Chinese medicine (TCM). The purpose of this study was to quantitatively investigate the difference in the amount of stimulation according to range and frequency among parameters of lifting-thrusting manipulation with the use of a needle insertion-measurement system. Methods: For quantification of lifting-thrusting manipulation, an acupuncture needle insertion-measurement system was used in phantom tissue. The motor and force sensors of the needle insertion device were connected to the control software. This enabled operation of the lifting-thrusting manipulation and measurement of the acupuncture needle force. The measurement of the acupuncture needle force according to various frequencies (0.25, 0.50, 0.75, and 1 Hz) and ranges of movement (2, 4, 6, 8, and 10 mm) was repeated 10 times. Results: At a constant frequency of movement, acupuncture needle force according to range of movement (2, 4, 6, 8, and 10 mm) increased with increasing range of movement (p < 0.05). At a constant range of movement, acupuncture needle force according to frequency of movement (0.25, 0.50, 0.75, and 1.0 Hz) increased with increasing frequency of movement (p < 0.05). Conclusion: In this study, we conducted a quantitative comparison of the amount of stimulation according to range and frequency, the main parameters of lifting-thrusting manipulation, by using an acupuncture needle insertion-measurement system. Future studies on various manipulations and parameters are warranted to quantify and objectify the amounts of stimulation by acupuncture manipulation.

Heating Characteristics Evaluation of Superposed Sonication Using Glycerol Tissue Mimic Phantom (글리세롤 조직유사 팬텀을 이용한 초음파 중첩 조사에 따른 가열 특성 평가)

  • Noh, Si-Cheol;Kang, Sang-Sik;Park, Ji-Koon;Kim, Ju-Young;Jung, Bong-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.523-528
    • /
    • 2015
  • In this study, we evaluated the heating characteristics of single sonication and superposed two low-intensity ultrasonic sonication. Compare the results, the superposed sonication was showed a superior thermal effect than single sonication. And the maximum temperature was increased as 120-150%. The starting time of temperature rising has been shortened in superposed sonication. In addition, the time up to the maximum temperature has been shortened, too. In generally, as the ultrasonic intensity is higher, the more surface damage is occurred. However, in the case of superposed sonication, the same thermal effect had be confirmed without surface damage. Through the results of the study, we thought that the superposed sonication will be able to reduce the intensity of the ultrasonic treatment. And, by using the low-intensity, the more safe and more effect therapy will be possible in therapeutic ultrasound application.