• 제목/요약/키워드: Tire slip

검색결과 93건 처리시간 0.023초

모터 회전 각도를 활용한 타이어 마모도 확인 기법 (Detection method for a tire wear using a motor rotation angle)

  • 서의성;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.252-254
    • /
    • 2017
  • 자동차 타이어는 차량을 운행하는데 있어 중요한 요소 중 하나이다. 타이어가 마모됨에 따라 자동차 제동거리가 늘어나고 슬립현상이 발생할 가능성이 크다. 따라서 주기적으로 타이어의 마모도를 확인하고 교체해주어야 한다. 기존에는 사람이 직접 마모도를 확인하여 타이어 교체여부를 판단하였다. 하지만 사람에 따라 기준이 다르기 때문에 교체 주기가 불분명해진다. 본 논문에서는 모터 회전각도를 활용한 타이어 마모도 확인 기법을 통해 명확한 교체주기를 마련한다. 명확한 교체주기가 정립됨으로써 타이어로 인한 차량 사고율이 줄어들 것으로 기대되기 때문에 모터 회전 각도를 활용한 타이어 마모도 확인 기법을 제안한다.

  • PDF

비포장노면 차량 거동 분석을 위한 타이어 테스트베드 개발 (Development of Tire Test Bed for Dynamic Behavior Analysis of Vehicles on Off-roads)

  • 이대경;손정현
    • 한국기계가공학회지
    • /
    • 제21권3호
    • /
    • pp.29-35
    • /
    • 2022
  • When a vehicle is driven off a road surface, the deformations of the road surface and tire are combined. Consequently, the dynamic behavior of wheel movement becomes difficult to predict and control. Herein, we propose a tire test bed to capture the dynamic behavior of tires moving on sand and soil. Based on this study, it is discovered that the slip rate can be controlled, and the vertical force can be measured using a load cell. The test results show that this test bed can be useful for capturing the dynamic behavior of the tire and validating dynamic simulations. In fact, the tire test bed developed in this study can be used to verify the results of computer simulations. In addition, it can be used for basic experiments pertaining to the speed control of unmanned autonomous vehicles.

연약지(軟弱地)에서 상사성(相似性) 원리(原理)를 이용(利用)한 차륜(車輪)의 성능분석(性能分析)에 관한 연구(硏究) (Similitude Study of Performance of Lugged Wheel on Soft Soils)

  • 이규승
    • Journal of Biosystems Engineering
    • /
    • 제18권3호
    • /
    • pp.220-229
    • /
    • 1993
  • A dimensional analysis was carried out to investigate if model agricultural radial tire can predict the tractive performance of prototype tires. Experimental data was analyzed to prove the results of dimensional analysis. The results was summerized as follows ; 1. When the model and prototype tires are tested under the same soil conditions, inflation pressure, slip and dynamic load, traction coefficient ratio between two tires depend on the geometry of two tires. 2. According to the regression analysis of the experimental data, traction equation parameters of the prototype tires can be predicted from the that of model tire 3. Predicted traction coefficient of prototype tire, calculated from the traction equation paramters, showed good correlation with that of experimental results. Thus it was possible to predict net and gross traction of prototype tire from the model traction equation parameters.

  • PDF

타이어 가류브레더 팽창거동에 관한 유한요소해석 (A Study on the Curing Bladder Shaping of Tire by FEM)

  • 김항우;황갑운;조규종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.184-191
    • /
    • 1996
  • In curing Process of tire, Contact and slip occurs between green tire and curing bladder. The curing process is a critical step in the manufacture of tires. In this investigation, curing bladder shaping is examined using a finite element method. Specifically, a finite element model between the inner part of green tire and the outer part of curing bladder is generated using contact element and curing bladder is generated using incompressible element, The experimental tensile tests are used to get the material properties of bladder rubber on practical conditions. Numerical analyses are performed on two different bladder types, different overall outer diameters of curing bladder and different heights of curing bladder.

  • PDF

Ball형 측정기를 이용한 토중 응력 상태의 계측 (Soil Stress State Determination Using a Ball-type Transducer)

  • 전형규
    • Journal of Biosystems Engineering
    • /
    • 제29권4호
    • /
    • pp.301-306
    • /
    • 2004
  • Soil stresses were measured beneath the centerline of one new 12.4R28 radial-ply tractor tire. The tire was operated with three inflation pressures(59㎪ 108㎪ and 157㎪) and a dynamic load of 14.2 kN and 20% slip. Soil stress state transducer(SST) measured the stresses in a hardpan soil profile. The depth of the SST was 250mm from soil surface. Analysis of the original soil stress data showed that the inflation pressure of tire did significantly affect the vertical stress. The major principal stresses calculated were more when the inflation pressure was 108㎪ than when it was 157㎪. The peak stresses of the major principal stresses presented more than those of the vertical stresses.

A FUZZY LOGIC CONTROLLER DESIGN FOR VEHICLE ABS WITH A ON-LINE OPTIMIZED TARGET WHEEL SLIP RATIO

  • Yu, F.;Feng, J.-Z.;Li, J.
    • International Journal of Automotive Technology
    • /
    • 제3권4호
    • /
    • pp.165-170
    • /
    • 2002
  • For a vehicle Anti-lock Braking System (ABS), the control target is to maintain friction coefficients within maximum range to ensure minimum stopping distance and vehicle stability. But in order to achieve a directionally stable maneuver, tire side forces must be considered along with the braking friction. Focusing on combined braking and turning operation conditions, this paper presents a new control scheme for an ABS controller design, which calculates optimal target wheel slip ratio on-line based on vehicle dynamic states and prevailing road condition. A fuzzy logic approach is applied to maintain the optimal target slip ratio so that the best compromise between braking deceleration, stopping distance and direction stability performances can be obtained for the vehicle. The scheme is implemented using an 8-DOF nonlinear vehicle model and simulation tests were carried out in different conditions. The simulation results show that the proposed scheme is robust and effective. Compared with a fixed-slip ratio scheme, the stopping distance can be decreased with satisfactory directional control performance meanwhile.

TDC 제어를 이용한 측면슬립 및 댐핑보상 강성제어 (Robust Steering Control with Side Slip and Yaw Damping Compensation Using Time Delay Control)

  • 이선봉;최해운
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.10-15
    • /
    • 2019
  • In this paper, we report a robust steering control using time delay control for the vehicle dynamics variation due to tire/road contact condition variation, the lateral disturbance force due to the side wind, and the yaw disturbance moment due to the difference between the left and right tires' pneumatic pressure. We controlled the side slip and yaw damping compensation for rapid steering at the high velocity of the vehicle. Based on the developed control, the driver can only consider the desired path without concerning on the vehicle dynamics variation, disturbances, and undesired side slip and yaw oscillations. Simulation results show that robustness from the vehicle dynamics variation and disturbances was achieved by using the developed time delay control. We evaluated the side slip and yaw damping compensation capability for the rapid steering at the high velocity of the vehicle in the cases of three control methods.

FEM을 이용한 타이어의 벨트각도에 따른 PRAT 및 코너링 특성 연구 (A Study on Characteristics of PRAT and Cornering due to the Belt Angle of Tire by the FEM)

  • 성기득;김성래;김기현;김선주;조춘택
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.104-112
    • /
    • 2006
  • The influence of tire belt angle on the Plysteer Residual Aligning Torque(PRAT) and the cornering stiffness by the FEM has been studied. The PRAT is a performance factor of the tire about vehicle pull, and the cornering stiffness has relation to vehicle steering response of outdoor test. To validate FE model for analysis, simulation data for both the static stiffness(vertical, lateral) and the PRAT have been compared with the experimental data. In addition to the characteristics of the PRAT and the cornering stiffness due to the tire belt angle, rolling and cornering contact characteristics have been studied. The tendency of the PRAT and the cornering stiffness due to the belt angle can be used as a guide line for the tire design in relation to vehicle pull and vehicle steering response.

차량 속도에 따른 타이어 수막현상의 특성 연구 (Characteristic Study of Tire Hydroplaning Phenomenon to Vehicle Velocity)

  • 손정삼;이홍우;조진래;우종식
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1307-1314
    • /
    • 2005
  • The most important factor of the traffic accident on the wet road is a tire slip caused by hydroplaning. Meanwhile, hydroplaning characteristics are influenced very greatly by the vehicle velocity, so it is very important to reveal the relation between hydroplaning and the vehicle velocity. Since the experiment study is considerably limited, recently the numerical simulation using finite element method(FEM) and finite volume method(FVM) is widely adopted. In this paper, the effect of the vehicle velocity on the hydroplaning characteristics is investigated through the hydroplaning analysis using MSC/Dytran.

슬립을 고려한 트랜스퍼 크레인의 주행제어에 관한 연구 (A Study on the Tracking Control of a Transfer Crane with Tire Slip)

  • 정지현;이동석;김영복
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1212-1219
    • /
    • 2010
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the technical trends and environment of the automated container terminal, it is necessary that the systems for cargo handling are equipped with more intelligent control technologies. To cope with this tendency, from the middle of the 1990's, the automated RMGC (Rail-Mounted Gantry Crane) and RTGC (Rubber-Tired Gantry Crane) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. If we want to obtain more efficient handling performance, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control problems must be considered in the control system design and application process. Considering these problems, in this paper, the system modelling with the tire slip and a tracking control approach are proposed. Especially, we design the tracking control system based on the 2DOF servosystem design approach to cope with undesirable disturbance input. The experiment results show the desirable performance and usefulness of the designed control system.