• 제목/요약/키워드: Tire load

검색결과 137건 처리시간 0.024초

이동하중에 의한 시험도로 아스팔트 포장의 거동 분석 (Behavior of Asphalt Pavement Subjected to a Moving Vehicle I: The Effect of Vehicle Speed, Axle-weight, and Tire Inflation Pressure)

  • 서영국;이광호
    • 대한토목학회논문집
    • /
    • 제26권5D호
    • /
    • pp.831-838
    • /
    • 2006
  • 본 연구에서는 차량의 주행속도, 차축하중 그리고 타이어 압력변화에 따른 아스팔트 포장의 주요 응답 특성을 분석하고자 하였다. 시험도로 아스팔트 포장 중 기층의 두께가 서로 다른 A5(180mm)와 A8(280mm)단면을 선정하여 표준 3축 덤프트럭에 의한 아스팔트의 변형률과 수직응력의 변화를 계측하였다. 모든 주행시험은 각 포장 단면의 주행차로에서 진행되었으며 실제 주행속도와 이동경로는 레이저 원더링 시스템을 적용하여 실시간으로 관찰, 기록하였다. 아스팔트 포장의 변형률은 차량의 주행속도가 증가할수록 그 크기가 감소하는 일반적인 점탄성 거동을 보였다. 특히 수직응력은 차축하중 뿐만 아니라 주행속도에도 영향을 받는 것으로 보아 속도별 차량의 운동특성이 각 차축으로 전달되는 연직하중의 크기에 많은 영향을 주고 있음을 알 수 있었다. 일반적으로 타이어 공기압이 증가하고 차축하중이 증가할수록 아스팔트 하부의 최대 인장변형률은 증가하였다. 두 아스팔트 포장 단면에서 다층탄성해석을 수행한 결과 변형률은 계측된 결과보다 크게 예측되었으며 수직응력은 수치해석결과가 계측결과보다 작게 평가되었다.

차축의 중량 분포와 타이어의 공기압이 트랙터 작업의 연료 효율에 미치는 영향 (Effects of Distribution of Axle Load and Inflation Pressure of Tires on Fuel Efficiency of Tractor Operations)

  • 이진웅;김경욱;김동현;최규정
    • Journal of Biosystems Engineering
    • /
    • 제36권5호
    • /
    • pp.303-313
    • /
    • 2011
  • This study was conducted to investigate the effects of axle weight distribution and inflation pressure of tire on the fuel economy of tractors as well as operational range of tractor engine in terms of engine speed and power when a 4WD tractor of 38.2 kW rated power at 2500 rpm is used for plowing and flooded-field rotavating in paddy fields. (1) Plowing operation required an average engine power of 9.6~13.5 kW which equals 25~35% of rated PTO power. Engine speed ranged from 1,320.4 to 1,737.4 rpm, work velocity from 3.4 to 4.8 km/h, and fuel consumption from 3.2 to 4.2 L/h, respectively. (2) Flooded-field rotavating required an average engine power of 11.5~18.5 kW which equals 30~48.4% of rated PTO power. Out of this 6.2~12.2 kW was used for PTO power. Engine speed ranged from 1,557 to 2,067 rpm, work velocity from 2.5~5.4 km/h and fuel consumption from 3.2~5.5 L/h, respectively. (3) Axle weight distribution, inflation pressure of tire and moisture content of soil did not affect significantly the specific volumetric fuel consumption but affected significantly the fuel consumption per unit area of operation. Fuel savings amounted to 65% in plowing operation and 20% in flooded-field rotavating when the axle weight distribution and inflation pressure of tire were optimally adjusted. (4) Optimal adjustment of axle weight distribution and inflation pressure of tire are expected to save fuel consumption by 10~65% per unit area of operation in plowing and 10~20% in flooded-field rotavating.

폐타이어 매트로 보강된 풍화토지반의 거동 (Behavior of Weathered Soil Reinforced with Waste Tire Mat)

  • 윤여원;천성한;허승범
    • 한국지반환경공학회 논문집
    • /
    • 제6권4호
    • /
    • pp.37-46
    • /
    • 2005
  • 폐타이어는 높은 인장저항력으로 인하여 지반보강에 사용될 수 있을 뿐 아니라 재활용시 대량처리에도 효과적이다. 폐타이어를 지반보강재로 사용하기 위하여 타이어 트레드만을 이용한 트레드매트를 제작하였다. 현장에서 화강풍화토지반을 조성하여 트레드매트의 보강효과를 알아보기 위하여 트레드매트와 상업용 지오그리드 각각에 대한 평판재하시험을 수행하였다. 그리고 지반보강재 인접 지반에서의 응력과 변형을 알아보기 위해 수치해석을 수행하였다. 트레드매트는 상업용지오그리드 못지 않은 지반보강효과를 나타내었다. 유한요소해석결과 지반보강재 바로 밑에서 응력의 현저한 감소를 나타내었으며 보강재로 인한 응력분포를 확인할 수 있었다. 최종적으로 폐타이어의 대량처리를 위한 수단으로 지반보강을 위한 트레드매트의 사용이 제안되었다.

  • PDF

타이어 접지문제의 유한요소 응력해석 (Finite Element Analysis of the Tire Contact Problem)

  • 한영훈;김용희;허훈;곽윤근
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.820-830
    • /
    • 1989
  • 본 논문에서는 타이어의 각 부분의 물성치 계산을 위한 식을 유한요소법에 적용할 수 있도록 제안하였다. 이 식은 강철 코드의 굽힙효과를 고려 하였으며, 특히 각 요소에서 전단변형이 일어나는 동안의 굽힘효과를 고려하였다. 유한요소 공식화는 가상일의 원리에 의하여 평형 방정식으로부터 유도하였고, Updated refer- ence coordinate에 대해 증분해석을 적용하여 Updated Lagrangian공식화를 하였다. 그리고 차량하중에 의하여 타이어가 노면에 접지될때의 응력상태를 게산할 수 있도록 접촉문제 공식화를 유한요소 공식화에 첨가 하였다.

Wheel Bearing Unit의 구조해석을 위한 경계조건 설정에 관한 연구 (Evaluation of Boundary Conditions for Structural Analysis of Wheel Bearing Units)

  • 김기훈;유영면;임종순;현준수
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.230-237
    • /
    • 2000
  • The wheel bearing in vehicles has been improved to unit module by joining a bearing to a hub in order to achieve weight reduction and easy assembly. Currently, the contact force between a raceway and balls of a bearing is applied as the external force in order to analyse the structure of the unit type bearings. In this paper, simplified boundary conditions are discussed for structure analysis of wheel bearing unit. From the procedure, the contact conditions of balls and race in wheel bearing unit are considered as equivalent non-linear spring elements. The end node of a spring element is constrained in displacement. And the external force of boundary conditions is applied at the contact point between tire and road. For the evaluation of this analysis, its results for the force of spring elements are compared with contact forces of calculated results. and also maximum equivalent stresses of analysis are compared with results of test at the flange of inner ring. The analysis results with proposed boundary conditions are more accurate than results from analysis which is generally used.

  • PDF

Experimental and analytical study of a new seismic isolation device under a column

  • Benshuai Liang;Guangtai Zhang;Mingyang Wang;Jinpeng Zhang;Jianhu Wang
    • Earthquakes and Structures
    • /
    • 제24권6호
    • /
    • pp.415-428
    • /
    • 2023
  • Low-cost techniques with seismic isolation performance and excellent resilience need to be explored in the case of rural low-rise buildings because of the limited buying power of rural residents. As an inexpensive and eco-friendly isolation bearing, scrap tire pads (STPs) have the issue of poor resilience. Thus, a seismic isolation system under a column (SISC) integrated with STP needs to be designed for the seismic protection of low-rise rural buildings. The SISC, which is based on a simple exterior design, maintains excellent seismic performance, while the mechanical behavior of the internal STP provides elastic resilience. The horizontal behaviors of the SISC are studied through load tests, and its mechanical properties and the intrinsic mechanism of the reset ability are discussed. Results indicate that the average residual displacement ratio was 24.59%, and the reset capability was enhanced. Comparative experimental and finite element analysis results also show that the load-displacement relationship of the SISC was essentially consistent. The dynamic characteristics of isolated and fixed-base buildings were compared by numerical assessment of the response control effects, and the SISC was found to have great seismic isolation performance. SISC can be used as a low-cost base isolation device for rural buildings in developing countries.

Magic Formula를 이용한 아스팔트 노면에서의 농업용 트랙터의 견인력 추정 (Drawbar Pull Estimation in Agricultural Tractor Tires on Asphalt Road Surface using Magic Formula)

  • 김경대;김지태;안다빈;박정호;조승제;박영준
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.92-99
    • /
    • 2021
  • Agricultural tractors drive and operate both off-road and on-road. Tire-road interaction significantly affects the tractive performance of a tractor, which is difficult to predict numerically. Many empirical models have been developed to predict the tractive performance of tractors using the cone index, which can be measured through simple tests. However, a magic formula model that can determine the tractive performance without a cone index can be used instead of traditional empirical models as the cone index cannot be measured on asphalt roads. The aim of this study was to predict the tractive performance of a tractor using the magic formula tire model. The traction force of the tires on an asphalt road was measured using an agricultural tractor. The dynamic wheel load was calculated to derive the coefficients of the traction-slip curve using the measured static wheel load and drawbar pull of the tractor. Curve fitting was performed to fit the experimental data using the magic formula. The parameters of the magic formula tire model were well identified, and the model successfully determined the coefficient of traction of the tractor.

스로틀 개도 제어와 부하토크 추정을 이용한 엔진 제어 방식 TCS (Engine Control TCS using Throttle Angle Control and Estimated Load Torque)

  • 강상민;윤마루;선우명호
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.139-147
    • /
    • 2004
  • The purpose of engine control TCS is to regulate engine torque to keep driven wheel slip in a desired range. In this paper, engine control TCS using sliding mode control law based on engine model and estimated load torque is proposed. This system includes a two-level controller. Slip controller calculates desired wheel torque, and engine torque controller determines throttle angle for engine torque corresponding to desired wheel torque. Another issue is to measure load torque for model based controller design. Luenberger observer with state variables of load torque and engine speed solves this problem as estimating load torque. The performance of controller and observer is certificated by simulation using 8-degree vehicle model, Pacejka tire model, and 2-state engine model. The simulation results in various maneuvers during slippery and split road conditions showed that acceleration performance and ability of the vehicle with TCS is improved. Also, the load torque observer could estimate real load torque very well, so its performance was proved.

CAE를 이용한 휠 내구성능 동역학 해석을 위한 연구 (The Study on Dynamic Analysis of Durability of a Wheel using CAE)

  • 박재흥;박태원;정성필
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1296-1303
    • /
    • 2012
  • There is a certain limit to reproduce phenomena between the real vehicle and road, since the existing methods to verify durability of the wheel are mostly uni-axial tests. And the change of durability of the wheel can't be predicted since these tests don't consider the camber angle and lateral force as important factors. In this paper, the FE models of the wheel-tire and drum are created. Then, the vertical and lateral loads are applied to wheel-tire assembly and the camber angle is applied by inclining the wheel-tire assembly to the drum. Based on the analysis result, the crack position is predicted to be created in the body of the wheel. The variation of the stress according to the camber angle is verified and the maximum spot of the stress changes continually.

노면 특성을 고려한 고무 마찰 예측 연구 (The Prediction of Rubber Friction considering Road Characteristics)

  • 남승국;오염락;전성희
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.105-110
    • /
    • 2014
  • This paper presents the hysteresis friction of a sliding elastomer on various types of surfaces. The hysteresis friction is calculated by means of an analytical model which considers the energy spent by the local deformation of the rubber due to surface asperities. By establishing the fractal character of the surfaces, the contribution to rubber friction of roughness at different length scales is accounted for. High resolution surface profilometer is used in order to calculate the main three surface descriptors and the minimal length scale that can contribute to hysteresis friction. The results show that this friction prediction can be used in order to characterize in an elegant manner the surface morphology of various surfaces and to quantify the friction coefficient of sliding rubber as a function of surface roughness, load and speed.