• 제목/요약/키워드: Tire/Road

검색결과 271건 처리시간 0.037초

VPA를 이용한 트랙터 좌석 진동의 전달 특성 구명 (Investigation of Transmission Characteristics of Tractor Seat Vibrations Using Vibration Path Analysis Method)

  • 이주완;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제26권3호
    • /
    • pp.237-244
    • /
    • 2001
  • This work was intended to investigate the effect of vibration transmission paths on the ride vibration of tractor during the rotavating and transporting operations by applying the vibration path analysis method. Accelerations at the cab mounts were measured during the rotavating and transporting operations. Ride vibrations at the sear were than calculated using the measured accelerations at the cab mounts, and the frequency response functions and inertances between the seat and cab mounts, which were derived experimentally by the impact hammer test in static condition. The human sensitivity to vibration frequency was also taken into consideration for the calculation of ride vibrations at the 1/3 octave center frequencies in the frequency domain. Vibrations transmitted through rear cab mounts affected more significantly the ride vibration of tractor. The peak accelerations at the seat occurred at the frequencies of the engine and crank speed, and the frequency induced by tire lugs on the road transportation. It was found that the rear cab mounts should be improved in order to reduce the ride vibrations more effectively.

  • PDF

차량 모델의 복잡성이 차량동력학 해석에 미치는 영향 : 모델의 비교 및 검증 (An Effect of the Complexity in Vehicle Dynamic Models on the Analysis of Vehicle Dynamic Behaviors: Model Comparison and Validation)

  • 배상우;윤중락;이장무;탁태오
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.267-278
    • /
    • 2000
  • Vehicle dynamic models in handing and stability analysis are divided into three groups: bicycle model, roll axis model and full vehicle model. Bicycle model is a simple linear model, which hag two wheels with load transfer being ignored. Roll axis model treats left and right wheels independently. In this model, load transfer has a great effect on nonlinearity of tire model. Effects of suspension system can be analyzed by using full vehicle model, which is included suspension stroke motions. In this paper, these models are validated and compared through comparison with road test, and the effects of suspension kinematics and compliance characteristics on vehicle motion are analyzed. In handling and stability analysis, roll axis model can simulate the real vehicle motion more accurately than full vehicle model. Compliance steer has a significant effect, but the effect of suspension kinematics is negligible.

  • PDF

승용차의 single wheel에 대한 antilocking-brake-system의 구성 및 test rig을 이용한 제동실험 (Set up of an antilocking-brake-system for the single wheel of passenger cars and brake test using a test rig)

  • 홍예선;지태수;고창복
    • 오토저널
    • /
    • 제12권5호
    • /
    • pp.36-45
    • /
    • 1990
  • In this study an antilocking-brake-system was set up for the single wheel of passenger cars. The control algorithm for the system was programmed by C-language and executed by a 16bit personal computer, which took the role of an electronic control unit. The performance of the antilocking-brake-system was tested using a test rig, which was specially designed and built up for the simulation of braking on the slippery road. The test results were satisfactory. Although the simulation method of the friction characteristics between the tire and the contact surface on the test rig appeared not to be absolutely suitable, the test rig allowed the basic investigation of the influence of the antilocking brake control on the wheel slip.

  • PDF

A Study on the ECU and Control Algorithm of ABS for a Commercial Vehicle

  • Lee, Ki-Chang;Kim, Mun-Sub;Jeon, Jeong-Woo;Hwang, Don-Ha;Park, Doh-Young;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.166.1-166
    • /
    • 2001
  • Anti-lock Braking System(ABS) is a device which prevents the wheels form locked up under emergency braking of a vehicle. So it helps the vehicle to maintain the steerability and shortens the braking distance by maintaining optimal frictional force during braking since the tire road slip is controlled in acceptable range. Recently, ABS is accepted as a standard equipment in vehicles, especially in commercial vehicles(bus and trucks). Commercial vehicles don´t use hydraulic lines but use pneumatic lines for braking system mostly. In this paper, ECU(Electronic Control Unit) for the anti-lock braking system of a commercial vehicle which is equipped with a full-air brake system and its control algorithms are presented. In this algorithm wheel speed acceleration flags and wheel slip flags are defined ...

  • PDF

Vehicle Dynamic Analysis Using Virtual Proving Ground Approach

  • Min, Han-Ki;Park, Gi-Seob;Jung, Jong-An;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제17권7호
    • /
    • pp.958-965
    • /
    • 2003
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, noise/vibration/harshness (NVH), crashworthiness and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer In this study, we used the virtual proving ground (VPG) approach for obtaining the dynamic characteristics. The VPG approach uses a nonlinear dynamic finite element code (LS-DYNA3D) which expands the application boundary outside the classic linear static assumptions. The VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic results, a single lane change test has been performed. The prediction results were compared with the experimental results, and the feasibility of the integrated CAE analysis methodology was verified.

ISO 노면의 Pass-by-Noise Level 편차에 관한 연구 (The Study on the Variation of Pass-by-Noise level due to ISO Road)

  • 김기전;배철용;노국희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.371-376
    • /
    • 2003
  • The objective of this paper is to compare the site-to-site variability of ISO 10844 pass-by-noise test sites. In order to investigate the site-to-site variance of test surfaces, European commercial tires are tested at seven different test sites. Three Korea test sites and four Europe test sites are selected.. The pass by noise test is executed according to a 2001/43/EC regulation. A]though the ISO surface has a very specific track composition, it does not reduce the variation of pass-by-noise measurements over the surface of test sites. This paper shows that the test results of pass-by-noise level are different depending on the test sites. The correlation obtained in this work is able to predict the pass by noise level for certain test site using the data measured from another test site. 17he prediction value is range with an error within 1dB(A).

  • PDF

전차 모델에 대한 반능동 현가장치의 적용에 대한 연구 (A Study on the Application of Semi-active Suspension System to a 3-D Full Vehicle Model)

  • 방범석;백윤수;박영필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.938-944
    • /
    • 1994
  • Active damping has been shown to offer increased suspension performance in terms of vehicle isolation, suspension packaging, and road-tire contract force. Many semi-active damping strategies have been introduced to approximate the response of active damping with the modulation of passive damping parameters. This study investigates the characteristics of semi-active suspension control through the simulation of passive, skyhook active, and semi-active damping models. A quarter car model is studied with the conrolled damping replacing both passive and active damping. A new semi-active scheme is suggested to eliminate the abrupt changes in semi-active damping force. It is shown that the new strategy performs almost identically to the so called "force controlled" semi-active law without steep changes in damping force or body acceleration.eleration.

  • PDF

슬립율 제어를 위한 자동차용 유압 조절시스템의 최적 설계에 관한 연구 (A Study on Optimal Design of Automotive Hydraulic Control System for Slip Ratio Control)

  • 김대원;김진한;최석창
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.41-50
    • /
    • 1998
  • In this study, to investigate a characteristics of slip ratio control of H.C.U for ABS, half car model tester were developed and a new H.C.U. was compactly designed comparing to the commercical H.C.U. for ABS. In half car model tester, variable inertia wheel has been used to load the car weights and braking forces according to the road surface conditions which were realized by pneumatic cylinder. And solenoid valves using P.W.M. (Pulse Width Modulation) method were installed in the new H.C.U The slip ratio characteristics of tire had been measured using half car model tester and the results were used in the control simulation for a new H.C.U.

  • PDF

충돌회피를 위한 극한 운전시 자동차의 동적안정성 해석 (Dynamic Stability Analysis of A Vehicle in Limit Driving for Crash Avoidance)

  • 김성필;백운경
    • 동력기계공학회지
    • /
    • 제1권1호
    • /
    • pp.106-123
    • /
    • 1997
  • In this study, vehicle directional stability is investigated for limit driving for crash avoidance maneuver using a full vehicle dynamic model. The model was analytically validated using typical step steering and lane change simulation. Limit driving condition for the vehicle model was quoted from research results of references. It was demonstrated that instable vehicle motion was caused by not only road conditions but also driving conditions. Also, the simulation showed that braking combined with steering caused very hazardous situation in crash avoidance maneuver. Finally, phase plane plot approach was used to evaluate the dynamic instability.

  • PDF

CONTROL STRATEGY OF AN ACTIVE SUSPENSION FOR A HALF CAR MODEL WITH PREVIEW INFORMATION

  • CHO B.-K.;RYU G.;SONG S. J.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.243-249
    • /
    • 2005
  • To improve the ride comfort and handling characteristics of a vehicle, an active suspension which is controlled by external actuators can be used. An active suspension can control the vertical acceleration of a vehicle and the tire deflection to achieve the desired suspension goal. For this purpose, Model Predictive Control (MPC) scheme is applied with the assumption that the preview information of the oncoming road disturbance is available. The predictive control approach uses the output prediction to forecast the output over a time horizon and determines the future control over the horizon by minimizing the performance index. The developed method is applied to a half car model of four degrees-of-freedom and numerical simulations show that the MPC controller improves noticeably the ride qualities and handling performance of a vehicle.