• Title/Summary/Keyword: Tip filling

Search Result 34, Processing Time 0.024 seconds

Development of Tip Device for Hydraulic Filling Efficiency Improvements (수압식 충전의 효율 향상을 위한 선단장치 개발에 관한 연구)

  • Yu, Sung-Kon;Kim, Tae-Heok;Shin, Dong-Chun
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.403-411
    • /
    • 2012
  • In recent, the using of the hydraulic filling method has increased on the underground reinforcement of the abandoned mine in Korea, however it is the lack of research on the efficient filling method. In this study, tank model tests and field tests were conducted for development of tip device for filling efficiency improvements on the hydraulic filling method. In tank model experiments, the filling efficiency was evaluated according to the form and angle of the nozzle on tip device in the same condition. Then tip device model designed by tank model tests was applied to the field experiment. As a result, the amount of filling of nozzle $90^{\circ}$ tube is increased by approximately 18% compared to the common vertical injection pipe. The angle of repose was $30.82^{\circ}$. Filling hole spacing in the field is usually designed from 5m up to 10m assumed to be $40^{\circ}$ of the angle of repose. According to the results of this study, it is possible that the filling hole spacing expands at least 10m up to 15m applied to be $30^{\circ}{\sim}35^{\circ}$ of the angle of repose. Therefore, it is expected to be economical and efficient mine filling.

CAE Analysis of Powder Injection Molding Process for Dental Scaler Mold (치과용 스케일러 금형의 분말사출성형 CAE 해석설계)

  • Ko Y. B.;Park H. P.;Chung S. T.;Rhee B. O.;Hwang C. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.570-576
    • /
    • 2005
  • Powder Injection Molding(PIM) has recently been recognized as an advanced manufacturing technology for low-cost mass production of metal or ceramic parts of complicated geometry With this regards, design technology of dental scaler tip PIM mold, which has complex shape and small core pin (diameter=0.6mm), with the help of computer-aided analysis of powder injection molding process was developed. Computer-aided analysis for dental scaler tip mold was implemented by finite element method with non-Newtonian fluid, modified Cross model viscosity, PvT data of powder/binder mixture. Compter-aided analysis results, such as filling pattern, weldline formation, air vent position prediction were compared with experimental result, and eventually have been shown good agreement. The core pin (diameter=0.6mm) deflection analysis of dental scaler tip PIM mold during PIM filling process was also investigated before mold fabrication.

FINITE ELEMENT ANALYSIS OF STRESS TRANSMITTED TO THE PULPOTOMIZED PRIMARY MOLARS TREATED BY VARIOUS TEMPORARY FILLING LOADED AT DIFFERENT CONDITION (하악 제2유구치 치수 절단술시 치아 및 충전재에 미치는 응력에 관한 유한 요소법적 분석)

  • Kim, Dong-Su;Kim, Jong-Soo;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.4
    • /
    • pp.818-839
    • /
    • 1996
  • The strain gage, holographic and photoelastic analysis etc. have been used for stress analysis of prosthesis, orthodontic or orthopedic appliances and filling materials. But these methods has some limitation in analyzing the internal stress. The Finite Element Analysis has been proved to compensate this defect and widely used in this area. The purpose of this study was to compare the stress distributions of the various temporary filling methods being used in pulpotomy procedure. Three different models were designed according to temporary filling material and method: amalgam filling with ZOE base(Model I), amalgam filling with ZPC sub-base and ZOE(Model II), IRM filling only(Model III). The results of the experiment were as follows: 1. In model I under the load case 6 and 1, the significant stress was shown to be concentrated on the buccal portion of crown. 2. Model II showed the similar pattern of stress distribution to Model I. 3. In model III under load case 2, the stress was mainly distributed on the buccal cusp tip and buccal margin of filling material. In same model under the load case 3, the stress was distributed on the lingual cusp tip. 4. Based on the above data, IRM can be assumed to have advantage over the other tested materials in reducing the incidence of crown fracture by localized the stress within the filling materials.

  • PDF

Effects of pile geometry on bearing capacity of open-ended piles driven into sands

  • Kumara, Janaka J.;Kurashina, Takashi;Kikuchi, Yoshiaki
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.385-400
    • /
    • 2016
  • Bearing capacity of open-ended piles depends largely on inner frictional resistance, which is influenced by the degree of soil plugging. While a fully-plugged open-ended pile produces a bearing capacity similar to a closed-ended pile, fully coring (or unplugged) pile produces a much smaller bearing capacity. In general, open-ended piles are driven under partially-plugged mode. The formation of soil plug may depend on many factors, including wall thickness at the pile tip (or inner pile diameter), sleeve height of the thickened wall at the pile tip and relative density. In this paper, we studied the effects of wall thickness at the pile base and sleeve height of the thickened wall at the pile tip on bearing capacity using laboratory model tests. The tests were conducted on a medium dense sandy ground. The model piles with different tip thicknesses and sleeve heights of thickened wall at the pile tip were tested. The results were also discussed using the incremental filling ratio and plug length ratio, which are generally used to describe the degree of soil plugging. The results showed that the bearing capacity increases with tip thickness. The bearing capacity of piles of smaller sleeve length (e.g., ${\leq}1D$; D is pile outer diameter) was found to be dependent on the sleeve length, while it is independent on the sleeve length of greater than a 1D length. We also found that the soil plug height is dependent on wall thickness at the pile base. The results on the incremental filling ratio revealed that the thinner walled piles produce higher degree of soil plugging at greater penetration depths. The results also revealed that the soil plug height is dependent on sleeve length of up to 2D length and independent beyond a 2D length. The piles of a smaller sleeve length (e.g., ${\leq}1D$) produce higher degree of soil plugging at shallow penetration depths while the piles of a larger sleeve length (e.g., ${\geq}2D$) produce higher degree of soil plugging at greater penetration depths.

Essential of Endodontic microsurgery with the use of a Surgical Operating Microscope (외과적 근관치료의 핵심 - 치근단 미세누출 폐쇄술)

  • Kim, Sunil
    • The Journal of the Korean dental association
    • /
    • v.55 no.8
    • /
    • pp.556-564
    • /
    • 2017
  • Endodontic surgery is a procedure to treat apical periodontitis or abscess in cases that did not heal after nonsurgical treatment or retreatment. This might include situations with persistent intracanal infection after root canal treatment. Other reasons might be found in extraradicular infection, such as bacterial biofilm on the apical root surface or bacteria within the lesion. For many years, the treatment standard was the traditional approach with surgical burs and amalgam for root-end filling. Endodontic microsurgery is the most recent step in the evolution of endodontic surgery, applying not only ultrasonic tip and biocompatible filling materials but also incorporating high-power magnification and illumination. Although many studies have been published that advocate the use of modern technique, the traditional techniques are still widely used in the surgery community. The purpose of this study was to demonstrate the endodontic microsurgery procedure including the root-end preparation and filling with the use of a surgical operating microscope.

  • PDF

IN VITRO PULP CHAMBER TEMPERATURE CHANGE DURING COMPOSITE RESIN CURING WITH VARIOUS LIGHT SOURCES (복합레진 중합 광원에 따른 치수강 온도 변화에 대한 생체외 연구)

  • Lee, Ji-Young;Kim, Dae-Eop;Lee, Kwang-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.1
    • /
    • pp.85-91
    • /
    • 2004
  • The purpose of this study was to observe in vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. The kinds of light-curing sources were plasma arc light(P), low heat plasma arc light, traditional low intensity halogen light, low intensity LED(L-LED), and high intensity LED(H-LED). Temperature at the tip of light guide was measured by a digital thermometer using K-type thermocouple. Occlusal cavities$(2{\times}2{\times}1.5mm)$ were so prepared in extracted human premolars as to the remaining dentin thickness was 1mm. Dentin adhesive was applied to all cavities. Experimental groups consisted of no base group, ionomer glass base group, and calcium hydroxide base group. Temperature before and after resin filling was measured. Temperature at the light guide tip was the highest with P and the lowest L-LED. Temperature before resin filling was the highest with H-LED and the lowest with L-LED. Temperature after resin filling was the highest with H-LED and the lowest with L-P and with L-LED. The lining of base partially reduced the temperature rise.

  • PDF

Efficacy of reciprocating instruments and final irrigant activation protocols on retreatment of mesiobuccal roots of maxillary molars: a micro-CT analysis

  • Lilian Tietz;Renan Diego Furlan;Ricardo Abreu da Rosa;Marco Antonio Hungaro Duarte;Murilo Priori Alcalde;Rodrigo Ricci Vivan;Theodoro Weissheimer;Marcus Vinicius Reis So
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.13.1-13.13
    • /
    • 2022
  • Objectives: This study evaluated the efficacy of 3 reciprocating systems and the effects of 2 instruments for irrigant activation on filling material removal. Materials and Methods: Forty mesiobuccal roots of maxillary molars were prepared up to size 25.06 and obturated. Micro-computed tomography (micro-CT) examination #1 was performed. Teeth were then divided into 4 groups (n = 10), according to the retreatment protocol: (1) manual, (2) Reciproc Blue, (3) WaveOne Gold, and (4) X1 Blue. Micro-CT examinations #2 and #3 were performed after filling removal and repreparation, respectively. Next, all teeth were divided into 2 new groups (n = 20) according to the irrigant activation protocol: XP Clean (XP Clean size 25.02) and Flatsonic (Flatsonic ultrasonic tip). Micro-CT examination #4 was performed after irrigant activation. Statistical analysis was performed with a significance level set at 5%. Results: WaveOne Gold removed a significantly greater amount of filling material than the manual group (p < 0.05). The time to reach the WL was similar for all reciprocating systems (p > 0.05). X1 Blue was faster than the manual group (p < 0.05). Only manual group improved the filling material removal after the repreparation stage (p < 0.05). Both activation protocols significantly improved the filling material removal (p < 0.05), without differences between them (p > 0.05). Conclusions: None of the tested instruments completely removed the filling material. X1 Blue size 25.06 reached the working length in the shortest time. XP Clean and Flatsonic improved the filling material removal.

Effect of ultrasonic tip designs on intraradicular post removal

  • Aguiar, Anny Carine Barros;de Meireles, Daniely Amorim;Marques, Andre Augusto Franco;Sponchiado, Emilio Carlos Junior;Garrido, Angela Delfina Bitencourt;Garcia, Lucas Da Fonseca Roberti
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.265-269
    • /
    • 2014
  • Objectives: To evaluate the effect of different ultrasonic tip designs on intraradicular post removal. Materials and Methods: The crowns of forty human canine teeth were removed, and after biomechanical preparation and filling, the roots were embedded in acrylic resin blocks. The post spaces were made, and root canal molding was performed with self-cured acrylic resin. After casting (Cu-Al), the posts were cemented with zinc phosphate cement. The specimens were randomly separated into 4 groups (n = 10), as follows: G1 - no ultrasonic vibration (control); G2 - ultrasonic vibration using an elongated cylindrical-shaped and active rounded tip; G3 - ultrasonic vibration with a flattened convex and linear active tip; G4 - ultrasonic vibration with active semicircular tapered tip. Ultrasonic vibration was applied for 15 seconds on each post surface and tensile test was performed in a Universal Testing Machine (Instron 4444 - 1 mm/min). Results: G4 presented the highest mean values, however, with no statistically significant difference in comparison to G3 (p > 0.05). G2 presented the lowest mean values with statistically significant difference to G3 and G4 (p < 0.05). Conclusions: Ultrasonic vibration with elongated cylindrical-shaped and active rounded tip was most effective in reducing force required for intraradicular post removal.

Reinforcement for Bearing Capacity of PRD Steel Pile at Mudstone Area (이암지역에 근입된 PRD강관말뚝의 지지력 보강)

  • Kong, Jin-Young;Kang, Hee-Jin;Chun, Byung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1760-1769
    • /
    • 2007
  • The cut slope sliding which has been frequently encountered in Pohang area has been reported due to the rapid reduction of shear strength in mudstone after being exposed to the air. Mudstone has characteristics that it has high enough strength and stiffness in a dry condition, but the strength and stiffness decrease in a wet condition with groundwater infiltration. The case study in this paper shows that mudstone which had enough strength in a boring stage has lost the strength after installing PRD steel pipe pile inducing an insufficient bearing capacity, which has been ascertained by the static load test. Test construction has been performed to investigate the most favorable method for increasing a pile bearing capacity in mudstone with various methods such as MSG (Micro Silica Grouting) around the tip and side of a pile, the perimeter grouting combined with Micro pile reinforcement, and concrete filling after tip reinforcing grouting. From the test construction, MSG has been turned out to be the most favorable method for increasing a pile bearing capacity in mudstone, which has been confirmed by the static load test.

  • PDF

Computer Aided Engineering Design of Power Injection Molding Process for Dental Scaler Top Mold Design

  • Hwang, C.J.;Ko, Y.B.;Park, H.P.;Chung, S.T.;Rhee, B.O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.497-498
    • /
    • 2006
  • Powder Injection Molding (PIM) has recently been recognized as an advanced manufacturing technology for low-cost mass production of metal or ceramic parts of complicated geometry. With this regards, design technology of dental scaler tip PIM mold, which has complex shape, with the help of computer-aided analysis for powder injection molding process was developed. Compter aided analysis results, such as filling pattern, weldline formation, and air vent position prediction were investigated and eventually showed good agreements with experimental results.

  • PDF