• Title/Summary/Keyword: Tip axial length

Search Result 35, Processing Time 0.019 seconds

Vortex Features in a Half-ducted Axial Fan with Large Bellmouth (Effect of Tip Clearance)

  • Shiomi, Norimasa;Kinoue, Yoichi;Setoguchi, Toshiaki;Kaneko, Kenji
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.307-316
    • /
    • 2011
  • In order to clarify the features of tip leakage vortex near blade tip region in a half-ducted axial fan with large bellmouth, the experimental investigation was carried out using a 2-dimensional LDV system. Three sizes of tip clearance (TC) were tested: those sizes were 1mm (0.55% of blade chord length at blade tip), 2mm (1.11% of blade chord length at blade tip) and 4mm (2.22% of blade chord length at blade tip), and those were shown as TC=1mm, TC=2mm and TC=4mm, respectively. Fan characteristic tests and the velocity field measurements were done for each TC. Pressure - flow-rate characteristics and two-dimensional velocity vector maps were shown. The vortex trace and the vortex intensity distribution were also illustrated. As a result, a large difference on the pressure - flow-rate characteristics did not exist for three tip clearance sizes. In case of TC=4mm, the tip leakage vortex was outflow to downstream of rotor was not confirmed at the small and reference flow-rate conditions. Only at the large flow-rate condition, its outflow to downstream of rotor existed. In case of TC=2mm, overall vortex behaviors were almost the same ones in case of TC=4mm. However, the vortex trace inclined toward more tangential direction. In case of TC=1mm, the clear vortex was not observed for all flow-rate conditions.

Unsteadiness of Tip Leakage Flow in an Axial Compressor (축류 압축기 팁 누설 유동의 비정상 특성에 관한 연구)

  • Hwang, Yoo-Jun;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.58-63
    • /
    • 2012
  • Three dimensional unsteady numerical calculations were performed to investigate unsteadiness of the tip leakage flow in an axial compressor. The first stage of the four-stage low-speed research axial compressor was examined. Since this compressor has a relatively large tip clearance, the unsteadiness of the tip leakage flow is induced. Through the results from the unsteady calculations, the process of the induced unsteady tip leakage flow was investigated. It was shown that the leakage flow that occurred at a rotor blade tip clearance affected the pressure distribution on the pressure side near the tip of the adjacent blade, thus caused the fluctuation of the pressure difference between the pressure side and suction side. Consequently, the unsteady tip leakage flow was induced at the adjacent rotor blade. The unsteady feature of the tip leakage flow was changed as the operating point was moved. The interface between the tip leakage flow and the main flow only affected the trailing edge region at the design point whereas the interface influenced up to the leading edge at the low flow rate point. As the flow rate decreased, additionally, it was seen that the vortex size of the tip leakage flow increased and the relatively large length scale disturbance occurred. On the other hand, using frequency analysis, it was shown that the unsteadiness was not associated with the rotor speed and was about 40% of the blade passing frequency. This feature was explained in the rotor relative frame of reference, and the frequency decreased as the flow rate decreased.

Size Effect on Axial Compressive Strength of Concrete (콘크리트의 축압축강도에 대한 크기효과)

  • 이성태;김민욱;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.153-160
    • /
    • 2001
  • In this study, the size effect on axial compressive strength for concrete members was experimentally investigated. Experiment of mode I failure, which is one of the two representative compressive failure modes, was carried out by using double cantilever beam specimens. By varying the eccentricity of applied loads with respect to the axis on each cantilever and the initial crack length, the size effect of axial compressive strength of concrete was investigated, and new parameters for the modified size effect law (MSEL) were suggested using least square method (LSM). The test results show that size effect appears for axial compressive strength of cracked specimens. For the eccentricity of loads, the influence of tensile and compressive stress at the crack tip are significant and so that the size effect is present. In other words, if the influence of tensile stress at the crack tip grows up, the size effect of concrete increases. And the effect of initial crack length on axial compressive strength is present, however, the differences with crack length are not apparent because the size of fracture process zone (FPZ) of all specimens in the high-strength concrete is similar regardless of differences of specimen slenderness.

Experimental Study on the Effects of Upstream Periodic Wakes on Cascade with Tip Clearance (주기적 후류가 누설유동이 존재하는 익렬 유동에 미치는 영향에 대한 실험적 연구)

  • Im, Ji-Hyun;Kim, Dong-Hyun;Joo, Won-Goo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1986-1991
    • /
    • 2003
  • To research on change of blade row flow field with tip clearance caused by upstream periodic wake, an apparatus that generate periodic wake through traversing cylinders were installed. Then how movement of upstream wake affect cascade flow and tip leakage flow were measured. Cylinder was installed in front of 50% of chord length, and traversing velocity was calculated at approximately 11.7m/s regarding inlet velocity and chord length. To measure three-dimensional velocity of flow inside blade row, single slanted hot-wire was used. From the results, when the periodic wake is inserted, the flow inside of cascade is dominantly affected by vortex that is generated from cylinder. This periodic wake affects passage vortex and tip leakage vortex.

  • PDF

Performance Enhancement of a Low Speed Axial Compressor Utilizing Simultaneous Tip Injection and Casing Treatment of Groove Type

  • Taghavi-Zenouz, Reza;Behbahani, Mohammad Hosein Ababaf
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.91-98
    • /
    • 2017
  • Performance of a low speed axial compressor is enhanced through a proper configuration of blade row tip injection and casing treatment of groove type. Air injectors were mounted evenly spaced upstream of the blade row within the casing groove and were all aligned parallel to the compressor axis. The groove, which covers all the blade tip chord length, extends all-round the casing circumference. Method of investigation is based on solution of the unsteady form of the Navier-Stokes equations utilizing $k-{\omega}$ SST turbulence model. Extensive parametric studies have been carried out to explore effects of injectors' flow momentums and yaw angles on compressor performance, while being run at different throttle valve setting. Emphasis has been focused on situations near to stall condition. Unsteady numerical analyses for untreated casing and no-injection case for near stall condition provided to discover two well-known criteria for spike stall inception, i.e., blade leading edge spillage and trailing edge back-flow. Final results showed that with only 6 injectors mounted axially in the casing groove and at yaw angle of 15 degrees opposite the direction of the blade row rotation, with a total mass flow rate of only 0.5% of the compressor main flow, surprisingly, the stall margin improves by 15.5%.

A Three-Dimensional Numerical Simulation of Rotating Stall in an Axial Compressor (축류 압축기에서의 선회실속에 관한 3차원 수치해석)

  • Choi, Min-Suk;Oh, Seong-Hwan;Ki, Dock-Jong;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.68-75
    • /
    • 2007
  • A three-dimensional computation is conducted to simulate a three-dimensional rotating stall in a low speed axial compressor. It is generally known that a tip leakage flow has an important role on a stall inception. However, almost of researchers have taken no interest in a role of the hub-comer-stall on the rotating stall even though it is a common feature of the flow in an axial compressor operating near stall and it has a large effect on the flows and loss characteristics. Using a time-accurate unsteady simulation, it is found that the hub-comer-stall may be a trigger to collapse the axisymmetric flows under high loads. An asymmetric disturbance is initially originated in the hub-comer-stall because separations are naturally unstable flow phenomena. Then this disturbance is transferred to the tip leakage flows from the hub-comer-stall and grows to be stationary stall cells, which adheres to blade passage and rotate at the same speed as the rotor. When stationary stall cells reach a critical size, these cells then move along the blade row and become a short-length-scale rotating stall. The rotational speed of stall cells quickly comes down to 79 percent of rotor so they rotate in the opposite direction to the rotor blades in the rotating frame.

Effect of Vane/Blade Relative Position on Heat/Mass Transfer Characteristics on the Tip and Shroud for Stationary Turbine Blade (고정된 터빈 블레이드의 베인에 대한 상대위치 변화가 끝단면 및 슈라우드의 열/물질전달 특성에 미치는 영향)

  • Rhee Dong-Ho;Cho Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.446-456
    • /
    • 2006
  • The effect of relative position of the stationary turbine blade for the fixed vane has been investigated on blade tip and shroud heat transfer. The local mass transfer coefficients were measured on the tip and shroud fur the blade fixed at six different positions within a pitch. A low speed stationary annular cascade with a single turbine stage was used. The chord length of the tested blade is 150 mm and the mean tip clearance of the blade having flat tip is 2.5% of the blade chord. A naphthalene sublimation technique was used for the detailed mass transfer measurements on the tip and the shroud. The inlet flow Reynolds number based on chord length and incoming flow velocity is fixed to $1.5{\times}10^5$. The results show that the incoming flow condition and heat transfer characteristics significantly change when the relative position of the blade changes. On the tip, the size of high heat/mass transfer region along the pressure side varies in the axial direction and the difference of heat transfer coefficient is up to 40% in the upstream region of the tip because the position of flow reattachment changes. On shroud, the effect of tip leakage vortex on the shroud as well as tip gap entering flow changes as the blade position changes. Thus, significantly different heat transfer patterns are observed with various blade positions and the periodic variation of heat transfer is expected with the blade rotation.

Numerical Study of Film Cooling Characteristics in Turbine Blade Cavity (터빈 블레이드 캐버티 내 막냉각 특성에 관한 수치해석적 연구)

  • Kim, Kyung-Seok;Cho, Hyung-Hee;Kang, Shin-Hyoung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.648-651
    • /
    • 2008
  • Numerical calculations are performed to simulate the film cooling effect of turbine blade tip with squealer rim. Because of high temperature of inside rim, squealer rim is damaged easily. Therefore many various cooling systems were used. The calculations are based on 100,000 Reynolds number in linear cascade model. A blade has 2% tip clearance and 8.4% rim height. The axial chord length and turning angle is 237mm, 126$^{\circ}$. Numerical calculations are performed without and with film cooling. In a film cooling in the cavity, hot spots of cavity were cooled effectively. However hot spots of suction side rim still remains. The CFD results show that the circulation flow in cavity of squealer tip affects the temperature rise of squealer rim. To maintain the blade integrity and avoid the excessive hot spot of blade, rearrangement of cooling hole is needed.

  • PDF

SPRAY AND COMBUSTION CHARACTERISTICS OF HYDROCARBON FUEL INJECTED FROM PRESSURE-SWIRL NOZZLES

  • Laryea Gabriel Nii;No Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.31-37
    • /
    • 2004
  • This paper presents spray and combustion characteristics of hydrocarbon fuel injected from pressure-swirl nozzles. Three commercial nozzles with orifice diameters of 0.256, 0.308 and 0.333mm and injection pressures ranging from 0.7 to 1.3 MPa were selected f9r the experiments. Spray characteristics such as breakup length. spray angle and drop size (SMD) were analyzed using photo image analyses and Malvern Panicle Size Analyzer. The drop size was measured with and without a blower at the same measuring locations. The flame length and width were measured using photo image analyses. The temperature distribution along the axial distance and the gas emission such as CO, $CO_2\;and\;NO_x$ were studied. The breakup length decreased with an increase in injection pressure for each nozzle but increased with an increase in nozzle orifice diameter. The spray angle increased and SMD decreased with an increase in injection pressure. The flame with an increased linearly with an increase in injection pressure and in nozzle orifice diameter. The flame temperature increased with an increase in injection pressure but decreased along the axial distance. The maximum temperatures occurred closer to the burner exit and flame at axial distance of 242mm from the diffuser tip. The experimental results showed that the level of CO decreased while that of $CO_2\;and\;NO_x$ increased with an increase in injection pressure and nozzle orifice diameter.

  • PDF

Study on Effects of Pressure Ratio on the Wall-impingement Spray Characteristics of Nitrogen Gas using CNG Injector

  • Pham, Quangkhai;Chang, Mengzhao;Choi, Byungchul;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, an experimental investigation on the effects of the pressure ratio on the wall-impingement spray characteristics of nitrogen gas using a compressed natural gas (CNG) injector was conducted. The transient development of the impingement spray was recorded by a high speed camera with Z-type Schlieren visualization method. The spray behavior under various pressure ratio conditions were analyzed. The experimental results showed that the pressure ratio has positive effect on the development of spray wall-impingement. The effects of the above factor were evaluated in a constant volume chamber at atmospheric conditions. The data from test showed that, with the increase of the pressure ratio, the spray tip penetration (STP) quickly increases before the impingement and gradually increases after the impingement. Additionally, the spray velocity first increases and then sharply decreases on regardless of the injection pressure level. As the spray spreading angle increases, spray area and volume increases rapidly with the increase in STP at the beginning of injection, and finally entered a stable range, has a great correlation with the increase of pressure ratios.