• Title/Summary/Keyword: Tip Leakage

Search Result 172, Processing Time 0.024 seconds

Effect of Relative Position of Vane and Blade on Heat/Mass Transfer Characteristics on Stationary Turbine Blade Surface (베인과 블레이드 사이의 상대위치 변화에 따른 터빈 블레이드 표면에서의 열/물질전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.27-38
    • /
    • 2005
  • The present study investigated the effect of relative position of the blade on blade surface heat transfer. The experiments were conducted in a low speed wind tunnel with a stationary annular turbine cascade. The test section has a single turbine stage composed of sixteen guide vanes and blades. The chord length of the blade is 150 mm and the mean tip clearance of the blade is $2.5\%$ of the blade chord. The Reynolds number based on blade inlet velocity and chord length is $1.5{\times}105$ and mean turbulence intensity is about $3\%$. To investigate the effect of relative position of blade, the blade at six different positions in a pitch was examined. For the detailed mass transfer measurements, a naphthalene sublimation technique was used. In general, complex heat transfer characteristics are observed on the blade surface due to various flow characteristics, such as a laminar flow separation, relaminarization, flow acceleration, transition to turbulence and tip leakage vortices. The results show that the blade relative position affects those heat transfer characteristics because the distributions of incoming flow velocity and turbulence intensity are changed. Especially, the heat transfer pattern on the near-tip region is significantly affected by the relative position of the blade because the effect of tip leakage vortex is strongly dependent on the blade position. On the pressure side, the effect of blade position is not so significant as on the suction side surface although the position and the size of the separation bubble are changed.

A Study on Leakage Characteristics of a Scroll Compressor with alternative Refrigerants of R22 (R22 대체냉매를 적용한 스크롤 압축기의 누설 특성에 관한 연구)

  • Youn, Young;Kim, Yong-Chan;Min, Man-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.377-387
    • /
    • 2001
  • This paper presents leakage characteristics of a scroll compressor applying alternative refrigerants of R22 such as R407c and R410a under actual operating conditions. Because leakage in a scroll compressor produce significant losses and degradation of performance, those should be clarified to design a high efficient scroll compressor with alternative refrigerants of R22. However, flank and tip leakage characteristics of a scroll compressor with alternative refrigerants are very limited in open literature. In the present study, both experimentation and modeling of the leakages in the scroll compressor were performed. As a result, it was observed that the leakages of the scroll compressor with R407c increased by 15%, and that with R410a increased by 76% as compared to the compressor applying R22 under standard load conditions due to a higher upstream pressure and a higher pressure difference between pockets.

  • PDF

Numerical Investigation of Flow and Heat Transfer Characteristics on the Gas Turbine Blade with a Squealer Tip (스퀼러팁을 이용한 가스터빈 내에서의 3차원 유동 및 열전달 특성에 관한 연구)

  • Jung, Jong-Hun;Moon, Young-J.;Kim, Jin-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.159-162
    • /
    • 2008
  • In this paper, a numerical simulation of three-dimensional flow field and heat transfer coefficient distribution are conducted for two types of gas turbine blade with plane and squealer tips. The numerical results show that gas turbine blade with squealer tip considerably changes the flow structures near the tip regions of pressure and suction sides, so the overall heat transfer coefficients on the tip and shroud with squealer tip are lower than those with the plane tip blade. Finally, the effect of tip gap clearance on the flow field and heat transfer characteristics are investigated.

  • PDF

Numerical investigation of tip clearance effects on the performance of ducted propeller

  • Ding, Yongle;Song, Baowei;Wang, Peng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.795-804
    • /
    • 2015
  • Tip clearance loss is a limitation of the improvement of turbomachine performance. Previous studies show the Tip clearance loss is generated by the leakage flow through the tip clearance, and is roughly linearly proportional to the gap size. This study investigates the tip clearance effects on the performance of ducted propeller. The investigation was carried out by solving the Navier-Stokes equations with the commercial Computational Fluid Dynamic (CFD) code CFX14.5. These simulations were carried out to determine the underlying mechanisms of the tip clearance effects. The calculations were performed at three different chosen advance ratios. Simulation results showed that the tip loss slope was not linearly at high advance due to the reversed pressure at the leading edge. Three type of vortical structures were observed in the tip clearance at different clearance size.

A Numerical Analysis of Tip Flow Characteristics in An 1.5 Stage Axial Turbine (1.5단 축류 터빈의 익단 유동 특성에 관한 수치해석)

  • Hwang, Dong-Ha;Jung, Yo-Han;Baek, Je-Hyun;Rhee, Dong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.157-160
    • /
    • 2008
  • Tip clearance is a critical point in turbine to reduce friction between blade and casing. To estimate the direct effectiveness of the tip clearance, numerically analyzed are flow passing through rotors with and without tip clearance. The Results by CFX tells that rotors with tip clearance have vortex structure which makes larger loss in turbine, and shows lower total-to-total efficiency than that without tip clearance.

  • PDF

Numerical and experimental investigations on the aerodynamic and aeroacoustic performance of the blade winglet tip shape of the axial-flow fan (축류팬 날개 끝 윙렛 형상의 적용 유무에 따른 공기역학적 성능 및 유동 소음에 관한 수치적/실험적 연구)

  • Seo-Yoon Ryu;Cheolung Cheong;Jong Wook Kim;Byeong Il Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.103-111
    • /
    • 2024
  • Axial-flow fans are used to transport fluids in relatively low-pressure flow regimes, and a variety of design variables are employed. The tip geometry of an axial fan plays a dominant role in its flow and noise performance, and two of the most prominent flow phenomena are the tip vortex and the tip leakage vortex that occur at the tip of the blade. Various studies have been conducted to control these three-dimensional flow structures, and winglet geometries have been developed in the aircraft field to suppress wingtip vortices and increase efficiency. In this study, a numerical and experimental study was conducted to analyze the effect of winglet geometry applied to an axial fan blade for an air conditioner outdoor unit. The unsteady Reynolds-Averaged Navier-Stokes (RANS) equation and the FfocwsWilliams and Hawkings (FW-H) equation were numerically solved based on computational fluid dynamics techniques to analyze the three-dimensional flow structure and flow noise numerically, and the validity of the numerical method was verified by comparison with experimental results. The differences in the formation of tip vortex and tip leakage vortex depending on the winglet geometry were compared through a three-dimensional flow field, and the resulting aerodynamic performance was quantitatively compared. In addition, the effect of winglet geometry on flow noise was evaluated by numerically simulating noise based on the predicted flow field. A prototype of the target fan model was built, and flow and noise experiments were conducted to evaluate the actual performance quantitatively.

Effect of Relative Position of Vane and Blade on Heat/Mass Transfer Characteristics on Stationary Turbine Blade Surface (베인과 블레이드 사이의 상대위치 변화에 따른 터빈 블레이드 표면에서의 열/물질전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.140-150
    • /
    • 2004
  • In this study, the effect of relative position of the blade for the fixed vane has been investigated on blade surface heat transfer. The experiments were conducted in a low speed stationary annular cascade, and heat transfer of blade was examined for six positions within a pitch. Turbine test section has one stage composed of sixteen guide vanes and blades. The chord length of the tested blade is 150 mm and the mean tip clearance of the blade having flat tip is about $2.5\%$ of the blade chord. For the detailed mass transfer measurements on the blade surfaces, a naphthalene sublimation technique was used. The inlet flow Reynolds number is fixed to $1.5{\times}10^5$. Complex heat transfer characteristics are observed on the blade surface due to various flow characteristics, such as separation bubble, relaminarization, transition to turbulence and leakage vortices. The distributions of velocity and turbulence intensity change significantly with the relative position due to the blockage effect of the blade. This causes the variation of heat transfer patterns on the blade surface. The results show that the flow near the leading edge get highly disturbed and deflected toward the either side of the blade when the blade leading edge is positioned close to the trailing edge of the vane. Therefore, separation bubble disappears on the pressure side and overall heat transfer on the relaminarization region is increased. But, due to reduced tip gap flow at the upstream region, the effect of leakage flow on the upstream region of the blade surface is weakened. Thus, the heat transfer characteristics significantly change with the blade positions.

  • PDF

A Study on the Development of Icing by Injection of LPG in the Liquid Phase around Injector (I) (LPG 액상 분사 시 인젝터 주위의 Icing 현상에 관한 연구 (I))

  • 김우석;박정철;박심수;유재석;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.87-94
    • /
    • 2003
  • Recently, LPLi(Liquied-Phase LPG injection) system is studied for the new stringent emission regulations. But , there are some problems to be solved such as injector tip icing and fuel leakage for LPLi system development. In this paper, the icing problem near injector tip which leads to difficulty of accurate A/F control was studied and reported. Icing of injector tip and port wall was observed at all the cases in this study regardless of injection duration and angle, air humidity change. The spray angle of LPLi was observed approximately two times wider than that of Gasoline injection. This makes the LPLi spray collide with intake port around injector tip. Temperature of the wetted area was decreased and icing of water vapor contained in intake air because of evaporation of the fuel film. The ice of the injector tip and port wall is also affected by the materials related to heat transfer.

Numerical Prediction of a Performance Change in a Compressor Shrouded Impeller with Cavity Leakage Flow (슈라우드 임펠러에서 누설 유동이 압축기 성능에 미치는 영향에 대한 수치해석적 연구)

  • Choi, Min-Uk;Joo, Won-Gu;Park, Jun-Young;Yoon, Eui-Soo;Choi, Sang-Kyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.64-69
    • /
    • 2012
  • Generally the Shrouded type impeller is considered to free from the loss of tip leakage flow, but it is actually not possible to complete sealing between the rotating impeller and the sealing which is stay still. As a result, there is the possibility of flow leaking between impeller exit to entrance, especially with high pressure ratio compressor machine. The Cavity leakage flow is expected to influence negative effect on a machine performance and also inner flow structure. In this study, Impeller with shroud-casing gap leakage flow is simulated by numerical method (Using CFX 12.1). The influence of leakage flow on compressor performance and efficiency will be analysed, also detail flowfield change will posted.

A STUDY ON THE MICROLEAKAGE OF RETROFILLED TEETH WITH VARIOUS MATERIALS AND INSTRUMENTS FOR CAVITY PREPARATION (역행충전시 와동형성 기구 및 수복재에 따른 변연누출에 관한 연구)

  • Lee, Jae-Yong;Cho, In-Ho;Hong, Chan-Ui;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.1
    • /
    • pp.187-196
    • /
    • 1993
  • The purpose of this study was to evaluate the microleakage of retrofilled teeth with various materials [non-zinc Amalgam, IRM, Ketac-silver, CGP(cold-burnished, ultrafil)[and instruments for cavity preparation. Root apex were resected 2mm from apex horizontally and class I cavities were prepared in 2mm denpth, 1.5mm width and were filled with above mentioned materials. Root apex were resected 2mm from apex horizontally and class I cavities were prepared in 2mm depth, 1. 5mm width and were filled with above mentioned materials. 2% methylene blue dye solution was used for 4 days immersion and the linear leakage was measured with calipers and the volumetric leakage was determined with a spectrophotometer. The results were as follows : 1. Amalgam group showed the greatest amount of leakage and Ketac-silver group showed the least value. 2. By linear leakage test, the group retrofilled with Ketac-silver, or CGP showed better seal than the group of Amalgam or IRM. This was shown in both retrograde tip and Conventional method. 3. By volumetric leakage test, the group retrofilled with Ketac-silver showed significantly better seal than the group with IRM in retrograde tip method. 4. By volumetric leakage test, the group retrofilled with Ketac-silver showed significantly better seal than the group with Amalgam in the Conventional method.

  • PDF