• Title/Summary/Keyword: TinyOS Porting

Search Result 2, Processing Time 0.016 seconds

Android Real Target Porting Application Software Development (안드로이드 리얼 타깃 포팅 응용 소프트웨어 개발)

  • Hong, Seon Hack;Nam Gung, Il Joo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.3
    • /
    • pp.1-10
    • /
    • 2011
  • In this paper, we implemented the Android NDK porting application with Eclipse(JDK) ADT and TinyOS 2.0. TinyOS and Cygwin are component based embedded system and an Open-source basis for interfacing with sensor application from H-mote. Cygwin is a collection of tools for using the Linux environment for commercially released with x86 32 bit and 64 bit versions of Windows. TinyOS-2. x is a component based embedded OS by UC Berkeley and is an Open-source OS designed for interfacing the sensor application with specific C-language. The results of Android porting experiment are described to show the improvement of sensor interfacing functionality under the PXA320 embedded RTOS platform. We will further more develop the software programming of Android porting under Embedded platform and enhance the functionality of the Android SDK with mobile gaming and kernel programming under sensor interfacing activity.

Issues and Debugging Methodology for Porting TinyOS on a Small Network Embedded System (소형 네트워크 임베디드 시스템에 TinyOS 이식 과정에서의 이슈 및 디버깅 기법)

  • Kim, Dae-Nam;Kim, Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.94-105
    • /
    • 2008
  • Numerous platforms have been developed for ZigBee-based network embedded systems. Also, operating systems like TinyOS have been installed to facilitate efficient implementation of wireless sensor network applications which collect data, and/or execute commands. First of all, porting an operating system on a new platform may need invention of a substitute for a required but unsupported hardware component. This paper presents a multiplexed virtual system timer for a platform without a counter comparator which we have contrived to emulate by using an extra counter. Such porting also injects unexpected faults which cause a variety of painful failures. Unfortunately, TinyOS requires to handle a lot of asynchronous hardware interrupts which are hard to trace during debugging. Besides, simulators are not available for a new platform since the models of hardware on the platform are not usually developed, yet. We propose novel instrumentation techniques which can be used to effectively trace the bugs in such lack of debugging environment. These techniques are used to identify and fix a great deal of nasty issues in porting TinyOS 2.0 on MG2400 and MG2455 platforms made by RadioPulse Inc.