• Title/Summary/Keyword: Time-varying delay time

Search Result 312, Processing Time 0.018 seconds

Performance Analysis of Adaptive SC/MRC Diversity Combining using in AWGN (AWGN환경에서 적응형 SC/MRC 다이버시티 컴바이너 성능분석)

  • Yun, Deok-Won;Huh, Sung-Uk;Kim, Chun-Won;Choi, Yong-Tae;Lee, Won-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.757-763
    • /
    • 2018
  • It is very difficult to achieve sufficient data rate and required quality of service due to the time-varying nature of the radio channel and various jammers such as path loss, delay, Doppler, shadowing and interference. Especially, the propagation path between the transmitting antenna and the tracking antenna mounted on the fuselage during the test and evaluation of the projectile system considered in this paper is based on the rapid movement of the projectile, the interference due to multipath fading due to the terrain, The propagation path may be blocked. In order to effectively improve the multipath fading occurring in the wireless communication system, a diversity combiner technique is required. In this paper, to derive the design and improvement schemes for the space diversity combiner technique among the diversity combiner schemes, the BER performance of maximum ratio combining (MRC) and selection combining (SC) In an adaptive SC / MRC diversity combiner that operates with MRC when it is lower than the specified threshold criterion when comparing the SNR between two signals received from the channel and operates with SC at high and combines the two received signals The BER performance of the system was compared and analyzed.

Differences among Major Rice Cultivars in Tensile Strength and Shattering of Grains during Ripening and Field Loss of Grains (벼알의 인장강도 및 탈립성의 등숙중 변화와 품종간 차이 및 포장손실과의 관계)

  • Y. W. Kwon;J. C. Shin;C. J. Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 1982
  • Degree of grain shattering which is of varietal character is an important determinant for the magnitude of field loss of grains during harvest and threshing. Seven Indica \times Japonica progeny varieties and four Japonica varieties were subjected to measurements of tensile strength of grains, degree of grain shattering when panicles were dropped at 1.5m above concrete floor, and moisture content of grains (wet basis) during a period 35 to 63 days after heading. In addition, two varieties were tested for the relation of tensile strength of grains to the magnitude of field loss of grains in actual binder harvest. The 11 varieties differed conspicuously in tensile strength of grains and the degree of grain shattering: the weakest average tensile strength of grains of a variety was about 90g and the strongest about 250g with varying standard deviation of 30 to 60g. Three Indica \times Japonica varieties and one Japonica variety shattered I to 30% of the grains under the falling test. The threshold tensile strength of grains allowing grain shattering was estimated to be 180g on average for a sampling unit of 10 panicles, but only the grains having tensile strength weaker than 98g within the samples shattered. A decrease in average tensile strength by 10g below the threshold value corresponded to an increase of 3 to 5% in grain shattering. Most varieties did not change appreciably the tensile strength of grains and degree of grain shattering with delay in time of harvest and showed a negative correlation between the tensile strength and the moisture content of grains. The average tensile strength of grains was negatively correlated linearly with field loss in binder harvest. The average tensile strength for zero field loss in binder harvest was estimated to be 174g and a decrease in the average tensile strength by 10g corresponded to an increase of 40kg per hectare in field loss of grains. Instead of the average tensile strength of grains, the percentage of grains having tensile strength weaker than 100g is recommended as a criterion for the estimation of field loss of grains during harvesting operations as well as a basis of variety classification for grain shattering, since the standard deviation of tensile strength of grains varies much with variety and time of harvest, and individual grains having tensile strength stronger than 98 did not shatter practically.

  • PDF