• Title/Summary/Keyword: Time-varying delay time

Search Result 312, Processing Time 0.028 seconds

Investigation of Perfusion-weighted Signal Changes on a Pulsed Arterial Spin Labeling Magnetic Resonance Imaging Technique: Dependence on the Labeling Gap, Delay Time, Labeling Thickness, and Slice Scan Order (동맥스핀표지 뇌 관류 자기공명영상에서 라벨링 간격 및 지연시간, 표지 두께, 절편 획득 순서의 변화에 따른 관류 신호변화 연구)

  • Byun, Jae-Hoo;Park, Myung-Hwan;Kang, Ji-Yeon;Lee, Jin-Wan;Lee, Kang-Won;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.108-118
    • /
    • 2013
  • Currently, an arterial spin labeling (ASL) magnetic resonance imaging (MRI) technique does not routinely used in clinical studies to measure perfusion in brain because optimization of imaging protocol is required to obtain optimal perfusion signals. Therefore, the objective of this study was to investigate changes of perfusion-weighed signal intensities with varying several parameters on a pulsed arterial spin labeling MRI technique obtained from a 3T MRI system. We especially evaluated alternations of ASL-MRI signal intensities on special brain areas, including in brain tissues and lobes. The signal targeting with alternating radiofrequency (STAR) pulsed ASL method was scanned on five normal subjects (mean age: 36 years, range: 29~41 years) on a 3T MRI system. Four parameters were evaluated with varying: 1) the labeling gap, 2) the labeling delay time, 3) the labeling thickness, and 4) the slice scan order. Signal intensities were obtained from the perfusion-weighted imaging on the gray and white matters and brain lobes of the frontal, parietal, temporal, and occipital areas. The results of this study were summarized: 1) Perfusion-weighted signal intensities were decreased with increasing the labeling gap in the bilateral gray matter areas and were least affected on the parietal lobe, but most affected on the occipital lobe. 2) Perfusion-weighted signal intensities were decreased with increasing the labeling delay time until 400 ms, but increased up to 1,000 ms in the bilateral gray matter areas. 3) Perfusion-weighted signal intensities were increased with increasing the labeling thickness until 120 mm in both the gray and white matter. 4) Perfusion-weighted signal intensities were higher descending scans than asending scans in both the gray and white matter. We investigated changes of perfusion-weighted signal intensities with varying several parameters in the STAR ASL method. It should require having protocol optimization processing before applying in patients. It has limitations to apply the ASL method in the white matter on a 3T MRI system.

Performance Improvement of AODV Routing Algorithm Using Timestamp (Timestamp를 이용한 AODV 라우팅 알고리즘의 성능 개선)

  • Lee Jae-Suk;Park Hae-Ryeon;Lee Kee-Hyun;Suk Jung-Bong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.830-836
    • /
    • 2006
  • One of the seminal operation parameters of AODV is the node-to-node travel time of data, which is currently set to fixed value of 40 ms in the RFC3561 and widely used to compute other parameters such as the expected round-trip time of the connection setup message, etc. We have naturally thought the network performance could be improved by dynamically varying the node-to-node travel time with respect to the traffic condition in the networt rather than using the fixed value, which motivates this work. To this end, we apply the idea of using timestamp; every node places the current time in the message before sending it out, and the receiver node computes the node travel time based on the moving average algorithm by considering not only the current value but also the previous ones in an accumulated and exponentially decreasing fashion with time. We evaluate the performance of the proposed scheme in respect of the number of RREQ messages generated, throughput, and delay as a function of traffic load and node mobility, and compare the result with the original AODV scheme. The results show that the proposed scheme presents noticeable performance improvements, expecially under the condition of high node mobility and high traffic load.

Hybrid Monitoring Scheme for End-to-End Performance Enhancement of Real-time Media Transport (실시간 미디어 전송의 종단간 성능 향상을 위한 혼성 모니터링 기법)

  • Park Ju-Won;Kim JongWon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10B
    • /
    • pp.630-638
    • /
    • 2005
  • As real-time media applications based on IP multicast networks spread widely, the end-to-end QoS (quality of service) provisioning for these applications have become very important. To guarantee the end-to-end QoS of multi-party media applications, it is essential to monitor the time-varying status of both network metrics (i.e., delay, jitter and loss) and system metrics (i.e., CPU and memory utilization). In this paper, targeting the multicast-enabled AG (Access Grid) group collaboration tool based on multi-Party real-time media services, a hybrid monitoring scheme that can monitor the status of both multicast network and node system is investigated. It combines active monitoring and passive monitoring approaches to measure multicast network. The active monitoring measures network-layer metrics (i.e., network condition) with probe packets while the passive monitoring checks application-layer metrics (i.e., user traffic condition by analyzing RTCP packets). In addition, it measures node system metrics from system API. By comparing these hybrid results, we attempt to pinpoint the causes of performance degradation and explore corresponding reactions to improve the end-to-end performance. The experimental results show that the proposed hybrid monitoring can provide useful information to coordinate the performance improvement of multi-party real-time media applications.

Cluster-based Delay-adaptive Sensor Scheduling for Energy-saving in Wireless Sensor Networks (센서네트워크에서 클러스터기반의 에너지 효율형 센서 스케쥴링 연구)

  • Choi, Wook;Lee, Yong;Chung, Yoo-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.47-59
    • /
    • 2009
  • Due to the application-specific nature of wireless sensor networks, the sensitivity to such a requirement as data reporting latency may vary depending on the type of applications, thus requiring application-specific algorithm and protocol design paradigms which help us to maximize energy conservation and thus the network lifetime. In this paper, we propose a novel delay-adaptive sensor scheduling scheme for energy-saving data gathering which is based on a two phase clustering (TPC). The ultimate goal is to extend the network lifetime by providing sensors with high adaptability to the application-dependent and time-varying delay requirements. The TPC requests sensors to construct two types of links: direct and relay links. The direct links are used for control and forwarding time critical sensed data. On the other hand, the relay links are used only for data forwarding based on the user delay constraints, thus allowing the sensors to opportunistically use the most energy-saving links and forming a multi-hop path. Simulation results demonstrate that cluster-based delay-adaptive data gathering strategy (CD-DGS) saves a significant amount of energy for dense sensor networks by adapting to the user delay constraints.

Automatic Blood Pressure Control Using PI Controller with $H_{\infty}$ Loop-Shaping

  • Han, Jeong-Yup;Lee, Sang-Kyung;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.326-329
    • /
    • 2004
  • In this paper, we show a new form of blood pressure controller combined PI control with $H_{\infty}$ loop-shaping. Hypertensive patients or post-operative patients need to maintain normally blood pressure. Exact regulation of blood pressure is needed for maintaining variable blood pressure of preventing complications. The regulation of blood pressure is achieved by injecting drugs, and usually sodium nitroprusside is used as those kinds of drugs. It is necessary to control the infusion rate sodium-nitroprusside carefully to achieve the desired blood pressure. It has been known that regulation of blood pressure by automatic controller is more effective than regulation of blood pressure by human operators. The control of blood pressure has many constraints and uncertainties. Most of biological system has the time-varying variables and the side effects such as increased risk of sepsis and organ failure. To solve such a problem, we design a new robust PI controller using $H_{\infty}$ loop-shaping to decrease noise effects that come out from human body and errors for time delay. The system with designed controller shows more stable control of mean blood pressure and more robust performance for uncertainties. Validation methods for the control performance are confirmed to computer simulations.

  • PDF

EMTP-RV Modeling of CT Saturation (EMTP-RV를 이용한 CT포화 모델링)

  • Kang, Yong-Cheol;Choi, Jae-Sun;Zheng, Tai-Ying;Kang, Hae-Gweon;Jang, Sung-Il;Kim, Yong-Gyun;Ryu, Young-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.9-11
    • /
    • 2008
  • A protection current transformer (CT) has been widely used for protection devices. When a fault occurs, a CT should provide the faithful reproduction of the primary fault current. However, a CT may saturates due to the magnitude of fault current, dc component primary time constant and the remanent flux of the iron core, and the secondary current of a CT is distorted. The distorted current can cause mal-operation or the operating time delay of a protection relay. This paper provides a modeling of CT saturation using EMTP-RV. The performance of the proposed CT saturation modeling was investigated under various fault conditions varying the fault distance, fault inception angle, and remanent flux of the iron core. The results indicate that the proposed EMTP-RV modeling can operate correctly, and the reasons for CT saturation are verified by EMTP-RV simulations.

  • PDF

Task-Level Dynamic Voltage Scaling for Embedded System Design: Recent Theoretical Results

  • Kim, Tae-Whan
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.3
    • /
    • pp.189-206
    • /
    • 2010
  • It is generally accepted that dynamic voltage scaling (DVS) is one of the most effective techniques of energy minimization for real-time applications in embedded system design. The effectiveness comes from the fact that the amount of energy consumption is quadractically proportional to the voltage applied to the processor. The penalty is the execution delay, which is linearly and inversely proportional to the voltage. According to the granularity of tasks to which voltage scaling is applied, the DVS problem is divided into two subproblems: inter-task DVS problem, in which the determination of the voltage is carried out on a task-by-task basis and the voltage assigned to the task is unchanged during the whole execution of the task, and intra-task DVS problem, in which the operating voltage of a task is dynamically adjusted according to the execution behavior to reflect the changes of the required number of cycles to finish the task before the deadline. Frequent voltage transitions may cause an adverse effect on energy minimization due to the increase of the overhead of transition time and energy. In addition, DVS needs to be carefully applied so that the dynamically varying chip temperature should not exceed a certain threshold because a drastic increase of chip temperature is highly likely to cause system function failure. This paper reviews representative works on the theoretical solutions to DVS problems regarding inter-task DVS, intra-task DVS, voltage transition, and thermal-aware DVS.

Robust frame synchronization algorithm in time-varying underwater acoustic communication channel (수중 음향통신에서 채널 시변동성에 강인한 프레임 동기 알고리즘)

  • Ko, Seokjun;Kim, Wan-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • In this paper, we propose a frame synchronization algorithm for robust to the combined effects of large Doppler fluctuations and extended, time-varying multipath in the underwater acoustic communication. From the algorithm, we can recover a high timing error which is occurred from an acoustic propagation delay and uncertainty of oscillator between transmitter and receiver. In order to verify the performance of the synchronization algorithm, the lake trial results are used. The lake experiments are performed in a Gyeongcheonho located in Mungyeong-si, Gyeongsangbuk-do. We can see that the start position of frame is adjusted after the frame synchronization while the receiver moving.

Design of a neural network based adaptive noise canceler for broadband noise rejection (광대역 잡음제거를 위한 신경망 적응잡음제거기 설계)

  • 곽우혁;최한고
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.30-36
    • /
    • 2002
  • This paper describes a nonlinear adaptive noise canceler(ANC) using neural networks(NN) based on filter to make up for the drawback of the conventional ANC with the linear adaptive filter. The proposed ANC was tested its noise rejection performance using broadband time-varying noise signal and compared with the ANC of TDL linear filter. Experimental results show that in cases of nonlinear correlations between the noise of primary input and reference input, the neural network based ANC outperforms the linear ANC with respect to mean square error It is also verified that the recurrent NN adaptive filter is superior to the feedforward NN filter. Thus, we identify that the NN adaptive filter is more effective than the linear adaptive filter for rejection of broadband time-varying noise in the ANC.

  • PDF

Coordinated Beamforming Systems with Channel Prediction in Time-varying MIMO Broadcast Channel (시변 다중입출력 방송 채널을 위한 채널예측이 적용된 협력 빔형성 시스템)

  • Kim, Jin;Kang, Jin-Whan;Kim, Sang-Hyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.302-308
    • /
    • 2011
  • In this paper we propose a coordinated beamforming(CBF) scheme considering the effects of feedback quantization and delay in time-varying multiple-input multiple-output(MIMO) broadcast channels. By equal power allocation per data stream, the proposed CBF scheme transmits multiple data streams per user terminals without additional feedback overhead when quantized feedback information is used. The proposed CBF scheme also applies a linear channel predictor to each user terminals to prevent errors due to feedback delays that are not evitable in practical wireless systems. Each user terminal utilizes Wiener filter to predict future channel responses and generates feedback information based on the predicted channels. Consequently the proposed CBF scheme adapting Wiener filter improves system performances compared with the conventional scheme using delayed feedback.