• Title/Summary/Keyword: Time-varying Channel

Search Result 280, Processing Time 0.025 seconds

A Study of Development of Transmission Systems for Next-generation Terrestrial 4K UHD & HD Convergence Broadcasting (차세대 지상파 4K UHD & HD 융합방송을 위한 전송 시스템 개발에 관한 연구)

  • Oh, JongGyu;Won, YongJu;Lee, JinSub;Kim, YongHwan;Paik, JongHo;Kim, JoonTae
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.767-788
    • /
    • 2014
  • The worldwide transition from analog to digital broadcasting has now been completed and the need to study next generation standards for Ultra High Definition TV (UHDTV) broadcasting, and broadcasting & communication convergence systems is rapidly growing. In particular, high resolution mobile broadcasting services are needed to satisfy recent consumers. Therefore, the development of highly efficient convergence broadcasting systems that provide fixed/mobile broadcasting through a single channel is needed. In this paper, a service scenario and requirements for providing 4K UHD & HD convergence broadcasting services through a terrestrial single channel are analyzed by employing the latest transmission and A/V codec technologies. Optimized transmission parameters for 6 MHz & 8 MHz terrestrial bandwidths are drawn, and receiving performances are measured under Additive White Gaussian Noise (AWGN) and time-varying multipath channels. From the results, in a 6 MHz bandwidth, the reliable receiving of HD layer data can be achieved when the receiver velocity is maximum 140 Km/h and is not achieved when the velocity is over 140 Km/h due to the limit of bandwidth. When the bandwidth is extended to 8 MHz, the reliable receiving of both 4K UHD and HD layer data is achieved under a very fast fading multipath channel.

The Study on Stability Channel Technology by Using Groyne in Alluvial Stream - Riverside Protection Techniques by Using Groyne - (충적하천에서 수제에 의한 안정하도 확보기술에 관한 연구 - 수제에 의한 하안보호 기법 -)

  • Park, Hyo-Gil;Jung, Sung-Soon;Kim, Chul-Moon;Ahn, Won-Sik;Jee, Hong-Kee
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.79-94
    • /
    • 2011
  • As demonstrated in study for non-submerged groynes, the flow field is predominantly two-dimensional, with mainly horizontal eddies. The eddies shed form the tips of the groynes and migrate in the flow direction. These eddies have horizontal dimensions in the order of tens of meters and time-scales in the order of minutes. In the standard flow simulations, these motions are usually not resolved, due to a too coarse grid, too large time steps and, more importantly, the use of inadequate turbulence modelling. using for example a k-${\varepsilon}$ model, it is necessary to introduce substantial modifications. Therefore simulation resolved in this study, were carried out using the DELFT-3D-MOR programme, which is part of the DELFT3D software package of WL/Delft Hydraulics and In this study, apply a two-dimensional depth-averaged model, taking an horizontal large eddy simulation(HLES). The bed morphology computed when using HLES, as well as the associated time-scale, is similar to what has been obseved in a field case. When using a mean-flow model with-out HELS, the bed morphology is less realistic and the morphological time-scale is much larger. This slow development is the result of neglecting(or averaging). the strong velocity fluctuations associated with the time-varying eddy formation.

Adaptive Cross-Layer Resource Optimization in Heterogeneous Wireless Networks with Multi-Homing User Equipments

  • Wu, Weihua;Yang, Qinghai;Li, Bingbing;Kwak, Kyung Sup
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.784-795
    • /
    • 2016
  • In this paper, we investigate the resource allocation problem in time-varying heterogeneous wireless networks (HetNet) with multi-homing user equipments (UE). The stochastic optimization model is employed to maximize the network utility, which is defined as the difference between the HetNet's throughput and the total energy consumption cost. In harmony with the hierarchical architecture of HetNet, the problem of stochastic optimization of resource allocation is decomposed into two subproblems by the Lyapunov optimization theory, associated with the flow control in transport layer and the power allocation in physical (PHY) layer, respectively. For avoiding the signaling overhead, outdated dynamic information, and scalability issues, the distributed resource allocation method is developed for solving the two subproblems based on the primal-dual decomposition theory. After that, the adaptive resource allocation algorithm is developed to accommodate the timevarying wireless network only according to the current network state information, i.e. the queue state information (QSI) at radio access networks (RAN) and the channel state information (CSI) of RANs-UE links. The tradeoff between network utility and delay is derived, where the increase of delay is approximately linear in V and the increase of network utility is at the speed of 1/V with a control parameter V. Extensive simulations are presented to show the effectiveness of our proposed scheme.

Development of Land fog Detection Algorithm based on the Optical and Textural Properties of Fog using COMS Data

  • Suh, Myoung-Seok;Lee, Seung-Ju;Kim, So-Hyeong;Han, Ji-Hye;Seo, Eun-Kyoung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.359-375
    • /
    • 2017
  • We developed fog detection algorithm (KNU_FDA) based on the optical and textural properties of fog using satellite (COMS) and ground observation data. The optical properties are dual channel difference (DCD: BT3.7 - BT11) and albedo, and the textural properties are normalized local standard deviation of IR1 and visible channels. Temperature difference between air temperature and BT11 is applied to discriminate the fog from other clouds. Fog detection is performed according to the solar zenith angle of pixel because of the different availability of satellite data: day, night and dawn/dusk. Post-processing is also performed to increase the probability of detection (POD), in particular, at the edge of main fog area. The fog probability is calculated by the weighted sum of threshold tests. The initial threshold and weighting values are optimized using sensitivity tests for the varying threshold values using receiver operating characteristic analysis. The validation results with ground visibility data for the validation cases showed that the performance of KNU_FDA show relatively consistent detection skills but it clearly depends on the fog types and time of day. The average POD and FAR (False Alarm Ratio) for the training and validation cases are ranged from 0.76 to 0.90 and from 0.41 to 0.63, respectively. In general, the performance is relatively good for the fog without high cloud and strong fog but that is significantly decreased for the weak fog. In order to improve the detection skills and stability, optimization of threshold and weighting values are needed through the various training cases.

Systems Engineering Approach to the Heat Transfer Analysis of PLUS 7 Fuel Rod Using ANSYS FEM Code

  • Park, Sang-Jun;Mutembei, Mutegi Peter;Namgung, Ihn
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.33-39
    • /
    • 2017
  • This paper describes the system engineering approach for the heat transfer analysis of plus7 fuel rod for APR1400 using, a commercial software, ANSYS. The fuel rod is composed of fuel pellets, fill gas, end caps, plenum spring and cladding. The heat is transferred from the pellet outward by conduction through the pellet, fill gas and cladding and further by convection from the cladding surface to the coolant in the flow channel. The goal of this paper is to demonstrate the temperature and heat flux change from the fuel centerline to the cladding surface when having maximum fuel centerline temperature at 100% power. This phenomenon is modelled using the ANSYS FEM code and analyzed for steady state temperature distribution across the fuel pellet and clad and the results were compared to the standard values given in APR1400 SSAR. Specifically the applicability of commercial software in the evaluation of nuclear fuel temperature distribution has been accounted. It is note that special codes have been used for fuel rod mechanical analysis which calculates interrelated effects of temperature, pressure, cladding elastic and plastic behavior, fission gas release, and fuel densification and swelling under the time-varying irradiation conditions. To satisfactorily meet this objective we apply system engineering methodologies to formulate the process and allow for verification and validation of the results acquired. The close proximity of the results obtained validated the accuracy of the FEM analysis of the 2D axisymmetric model and 3D model. This result demonstrated the validity of commercial software instead of proprietary in-house code that is more costly to develop and maintain.

Development of Model Test Methodology of Pack Ice in Square Type Ice Tank (사각 빙해수조에서의 Pack Ice 모형시험 기법 개발)

  • Cho, Seong-Rak;Yoo, Chang-Soo;Jeong, Seong-Yeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.390-395
    • /
    • 2011
  • The main purpose of ice model basin is to assess and evaluate the performance of the Arctic ships and offshore structures because the full-scale tests in ice covered sea are usually very expensive and difficult. There are various ice conditions, such as level ice, brash ice, pack ice and ice ridge, in the real sea. To estimate their capacities in ice tank accurately, an appropriate model ice sheet and prepared ice conditions copied from actual sea ice conditions are needed. Pack ice is a floating ice that has been driven together into a single mass and a mixture of ice fragments of varying size and age that are squeezed together and cover the sea surface with little or no open water. So Ice-class vessels and Icebreaker are usually operated in pack ice conditions for the long time of her voyage. The most ice model tests include the pack ice test with the change of pack ice concentration. In this paper, the effect of pack ice size and channel breadth in pack ice model test is conducted and analyzed. Also we presented some techniques for the calculation of pack ice concentration in the model test. Finally, we developed a new model test methodology of pack ice condition in square type ice tank.

The Bi-directional Least Mean Square Algorithm and Its Application to Echo Cancellation (양방향 최소 평균 제곱 알고리듬과 반향 제거로의 응용)

  • Kwon, Oh-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.12
    • /
    • pp.1337-1344
    • /
    • 2014
  • The objective of an echo canceller connected to any end of a communication line such as digital subscriber line (DSL) is to compensate the outgoing transmit signal in the receiving path that the hybrid circuit leaks. The echo canceller working in a full duplex environment is an adaptive system driven by the local signal. Conventional echo canceller that implement the least mean square (LMS) algorithm provides a low computational burden but poor convergence properties. The length of the echo canceller will directly affect both the degree of performance and the convergence speed of the adaptation process. To cancel long time-varying echoes, the number of tap coefficients of a conventional echo canceller must be large, which decreases the convergence speed of the adaptive filter. This paper proposes an alternative technique for the echo cancellation in a telecommunication channel. The new technique employs the bi-directional least mean square (LMS) algorithm for adaptively computing the optimal set of the coefficients of the echo canceller, which is composed of weighted combination of both feedforward and feedback algorithms. Finally, Simulation results as well as mathematical analysis demonstrates that the proposed echo canceller has faster convergence speed than the conventional LMS echo canceller with nearly equivalent complexity of computation.

Application of Wavelet-Based RF Fingerprinting to Enhance Wireless Network Security

  • Klein, Randall W.;Temple, Michael A.;Mendenhall, Michael J.
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.544-555
    • /
    • 2009
  • This work continues a trend of developments aimed at exploiting the physical layer of the open systems interconnection (OSI) model to enhance wireless network security. The goal is to augment activity occurring across other OSI layers and provide improved safeguards against unauthorized access. Relative to intrusion detection and anti-spoofing, this paper provides details for a proof-of-concept investigation involving "air monitor" applications where physical equipment constraints are not overly restrictive. In this case, RF fingerprinting is emerging as a viable security measure for providing device-specific identification (manufacturer, model, and/or serial number). RF fingerprint features can be extracted from various regions of collected bursts, the detection of which has been extensively researched. Given reliable burst detection, the near-term challenge is to find robust fingerprint features to improve device distinguishability. This is addressed here using wavelet domain (WD) RF fingerprinting based on dual-tree complex wavelet transform (DT-$\mathbb{C}WT$) features extracted from the non-transient preamble response of OFDM-based 802.11a signals. Intra-manufacturer classification performance is evaluated using four like-model Cisco devices with dissimilar serial numbers. WD fingerprinting effectiveness is demonstrated using Fisher-based multiple discriminant analysis (MDA) with maximum likelihood (ML) classification. The effects of varying channel SNR, burst detection error and dissimilar SNRs for MDA/ML training and classification are considered. Relative to time domain (TD) RF fingerprinting, WD fingerprinting with DT-$\mathbb{C}WT$ features emerged as the superior alternative for all scenarios at SNRs below 20 dB while achieving performance gains of up to 8 dB at 80% classification accuracy.

Clinical Study on One Patient with Multiple Sclerosis (다발성 경화증 환자 치험 1례)

  • Baek, Dong-Gi;Rhim, Eun-Kyung;Lee, Yun-Jae;Jeong, Hyun-Ae;Cho, Young-Kee;Moon, Mi-Hyun;Lee, Seong-Kyun;Kim, Dong-Woung;Shin, Sun-Ho;Hwang, Sang-Il
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.609-614
    • /
    • 2004
  • Multiple Sclerosis(MS) is an acquired, demyelinating disease of the central nervous system. Clinically, it is characterized by episodes of focal disorder of the optic nerves, spinal cord, and brain, which remit to varying extent and recur over a period of many years. The average age at diagnosis is 30, typically starting between the ages of 15 and 50. Women are affected at least twice as often as men. It is more common in persons of northern European heritage and those living furthest from the equator. The diagnosis of MS is based on a history of multiple attacks of neurologic lesions over time that affect different parts of the central nervous system. A case of MS was confronted. The patient was treated with Cheongsimyonjaum-gami(淸心蓮字飮加味), YangMyung channel(陽明) and had significant improvement was seen.

  • PDF

Linear Quadratic Controller Design of Insect-Mimicking Flapping Micro Aerial Vehicle (곤충모방 날갯짓 비행체의 LQ 제어기 설계)

  • Kim, Sungkeun;Kim, Inrae;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.450-458
    • /
    • 2017
  • This paper presents dynamic modelling and simulation study on attitude/altitude control of an insect-mimicking flapping micro aerial vehicle during hovering. Mathematical modelling consists of three parts: simplified flapping kinematics, flapping-wing aerodynamics, and six degree of freedom dynamics. Attitude stabilization is accomplished through linear quadratic regulator based on the linearized model of the time-varying nonlinear system, and altitude control is designed in the outer loop using PID control. The performance of the proposed controller is verified through numerical simulation where attitude stabilization and altitude control is done for hovering. In addition, it is confirmed that the attitude channel by periodic control is marginally stable against periodic pitching moment caused by flapping.