• Title/Summary/Keyword: Time-synchronization

Search Result 1,146, Processing Time 0.031 seconds

Adaptive Synchronization Method of Frequency Hopping Communications (주파수도약 통신의 적응동기 방법)

  • 한성우;김용선;박대철;전병민
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.39-44
    • /
    • 2001
  • In frequency hopping spread spectrum(FHSS) communication systems, exact frequency synchronization is required due to the random hopping of carrier frequencies between transmitter and receiver even under harsh channel conditions. For synchronization of FHSS communications, multi-frequency hopping synchronization(MFHS) method has been used in which a small set of frequencies are repeatedly sent several times for long duration. But this long duration resulted in being easily detected by the unauthorized users as well as long duration of acquisition time. In this paper, motivated by these problems, an adaptive synchronization method(ASM) is proposed. ASM is technics to reduce the synchronization time where the number of synchronization frequencies and repetition numbers is adaptively changed (increased or decreased) according to the channel conditions. The performance analysis showed that the time duration of synchronization was reduced to 0.2sec, and the influence of jamming or interference was decreased to 46% in ASM.

  • PDF

A New Simplified Clock Synchronization Algorithm for Indoor Positioning (실내측위를 위한 새로운 클락 동기 방안)

  • Lee, Young-Kyu;Yang, Sung-Hoon;Lee, Seong-Woo;Lee, Chang-Bok;Kim, Young-Beom;Choe, Seong-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3A
    • /
    • pp.237-246
    • /
    • 2007
  • Clock Synchronization is one of the most basic factors to be considered when we implement an indoor synchronization network for indoor positioning. In this paper, we present a new synchronization algorithm which does not employ time stamps in order to reduce the hardware complexity and data overhead. In addition to that, we describe an algorithm that is designed to compensate the frequency drift giving an serious impact on the synchronization performance. The performance evaluation of the proposed algorithm is achieved by investigating MTIE (Maximum Time Interval Error) values through simulations. In the simulations, the frequency drift values of the practical oscillators are used. From the simulation results, it is investigated that we can achieve the synchronization performance under 10 ns when we use 1 second synchronization interval with 1 ns resolution and TCXOs (Tmperature Compensated Cristal Oscillators) both in the master clock and the slave clock.

Clock Synchronization in Wireless Embedded Applications (무선 임베디드 환경에서의 시간 동기화)

  • No, Jin-Hong;Hong, Young-Sik
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.6
    • /
    • pp.668-675
    • /
    • 2005
  • With the proliferation of wireless network and the advances of the embedded systems, the traditional distributed systems begin to include the wireless embedded systems. Clock synchronization in the distributed systems is one of the major issues that should be considered for diverse Purposes including synchronization, ordering, and consistency. Many clock synchronization algorithms have been proposed over the years. Since clock synchronization in wireless embedded systems should consider the low bandwidth of a network and the poor resources of a system, most traditional algorithms cannot be applied directly. We propose a clock synchronization algorithm in wireless embedded systems, extending IEEE 802.11 standard. The proposed algorithm can not only achieve high precision by loosening constraints and utilizing the characteristics of wireless broadcast but also provide continuous time synchronization by tolerating the message losses. In master/slave structure the master broadcasts the time information and the stave computes the clock skew and the drift to estimate the synchronized time of the master. The experiment results show that the achieved standard deviation by the Proposed scheme is within the bound of about 200 microseconds.

Revisting Clock Synchronization Problems : Static and Dynamic Constraint Transformations for Real Time Systems (시계 동기화 문제의 재 고찰 : 실시간 시스템을 위한 정적/동적 제약 변환 기법)

  • Yu, Min-Su;Park, Jeong-Geun;Hong, Seong-Su
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.10
    • /
    • pp.1264-1274
    • /
    • 1999
  • 본 논문에서는 분산된 클록들을 주기적으로 동기화 시키는 분산 실시간 시스템에서 시간적 제약을 만족시키기 위한 정적/동적 시간 제약(timing constraint) 변환 기법을 제안한다. 전형적인 이산클록동기화(discrete clock synchronization) 알고리즘은 클록의 값을 순간적으로 조정하여 클록의 시간이 불연속적으로 진행한다. 이러한 시간상의 불연속성은 시간적 이벤트를 잃어버리거나 다시 발생시키는 오류를 범하게 한다.클록 시간의 불연속성을 피하기 위해 일반적으로 연속클록동기화(continuous clock synchronization) 기법이 제안되고 있지만 소프트웨어적으로 구현되면 많은 오버헤드를 유발시키는 문제점이 있다. 본 논문에서는 시간적 제약을 동적으로 변환시키는 DCT (Dynamic Constraint Transformation) 기법을 제안하였으며, 이를 통해 기존의 이산클록동기화 알고리즘을 수정하지 않고서도 클록 시간의 불연속성에 의한 문제점들을 해결할 수 있도록 하였다. 아울러 DCT에 의해 이산클록동기화 하에서 생성된 태스크 스케쥴이 연속클록동기화에 의해 생성된 스케쥴과 동일함을 증명하여 DCT의 동작이 이론적으로 정확함을 증명하였다.또한 분산 실시간 시스템에서 지역 클록(local clock)이 기준 클록과 완벽하게 일치하지 않아서 발생하는 스케쥴링상의 문제점을 다루었다. 이를 위해 먼저 두 가지의 스케쥴링 가능성, 지역적 스케쥴링 가능성(local schedulability)과 전역적 스케쥴링 가능성(global schedulability)을 정의하고, 이를 위해 시간적 제약을 정적으로 변환시키는 SCT (Static Constraint Transformation) 기법을 제안하였다. SCT를 통해 지역적으로 스케쥴링 가능한 태스크는 전역적으로 스케쥴링이 가능하므로, 단지 지역적 스케쥴링 가능성만을 검사하면 스케쥴링 문제를 해결할 수 있도록 하였고 이를 수학적으로 증명하였다.Abstract In this paper, we present static and dynamic constraint transformation techniques for ensuring timing requirements in a distributed real-time system possessing periodically synchronized distributed local clocks. Traditional discrete clock synchronization algorithms that adjust local clocks instantaneously yield time discontinuities. Such time discontinuities lead to the loss or the gain of events, thus raising serious run-time faults.While continuous clock synchronization is generally suggested to avoid the time discontinuity problem, it incurs too much run-time overhead to be implemented in software. We propose a dynamic constraint transformation (DCT) technique which can solve the problem without modifying discrete clock synchronization algorithms. We formally prove the correctness of the DCT by showing that the DCT with discrete clock synchronization generates the same task schedule as the continuous clock synchronization.We also investigate schedulability problems that arise when imperfect local clocks are used in distributed real-time systems. We first define two notions of schedulability, global schedulability and local schedulability, and then present a static constraint transformation (SCT) technique. The SCT ensures that it is sufficient to check the schedulability of a task locally in a node with a local clock, since the global schedulability of the task is derived from its local schedulability through SCT. We formally prove the correctness of SCT.

Continuous Clock Synchronization and Packet Loss Tolerance Scheme for Enhancing Performance of Reference Broadcast Synchronization (RBS 성능향상을 위한 연속 클럭 동기화 및 패킷 손실 보상 기법)

  • Do, Trong-Hop;Park, Konwon;Jung, Jaein;Yoo, Myungsik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.5
    • /
    • pp.296-303
    • /
    • 2014
  • Reference Broadcast Synchronization (RBS) is one of the most prominent synchronization protocols in wireless sensor nework. Given that the broadcasting medium is available, RBS can give very high accuracy of synchronization. However, RBS uses instantaneous synchronization and results in time discontinuity, which might cause serious faults in the distributed system. Also, RBS lacks packet loss tolerance, which brings about degraded performance in severe conditions of wireless channel. In this paper, the problem of time discontinuity in RBS is pointed out and the effect of packet loss on the performance of RBS is examined. Then, a continuous synchronization and a packet loss tolerance mechanism for RBS are proposed, and the result is verified through simulations.

Timeline Synchronization of Multiple Videos Based on Waveform (소리 파형을 이용한 다수 동영상간 시간축 동기화 기법)

  • Kim, Shin;Yoon, Kyoungro
    • Journal of Broadcast Engineering
    • /
    • v.23 no.2
    • /
    • pp.197-205
    • /
    • 2018
  • Panoramic image is one of the technologies that are commonly used today. However, technical difficulties still exist in panoramic video production. Without a special camera such as a 360-degree camera, making panoramic video becomes more difficult. In order to make a panoramic video, it is necessary to synchronize the timeline of multiple videos shot at multiple locations. However, the timeline synchronization method using the internal clock of the camera may cause an error due to the difference of the internal hardware. In order to solve this problem, timeline synchronization between multiple videos using visual information or auditory information has been studied. However, there is a problem in accuracy and processing time when using video information, and there is a problem in that, when using audio information, there is no synchronization when there is sensitivity to noise or there is no melody. Therefore, in this paper, we propose a timeline synchronization method between multiple video using audio waveform. It shows higher synchronization accuracy and temporal efficiency than the video information based time synchronization method.

Extending Network Domain for IEEE1394

  • Lee, Seong-Hee;Park, Seong-Hee;Choi, Sang-Sung
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.177-178
    • /
    • 2005
  • Wireless 1394 over IEEE802.15.3 must allow a data reserved for delivery over a wired 1394 network to be delivered over an IEEE802.15.3 wireless network through bridging IEEE 1394 to IEEE802.15.3. Isochronous transfers on the 1394 bus guarantee timely delivery of data. Specifically, isochronous transfers are scheduled by the bus so that they occur once every $125\;{\mu}s$ and require clock time synchronization to complete the real-time data transfer. IEEE1394.1 and Protocol Adaptation Layer for IEEE1394 over IEEE802.15.3 specify clock time synchronization for a wired 1394 bus network to a wired 1394 bus network and wireless 1394 nodes, which are IEEE802.15.3 nodes handling 1394 applications, over IEEE802.15.3. Thus, the clock time synchronizations are just defined within a homogeneous network environment like IEEE1394 or IEEE802.15.3 until now. This paper proposes new clock time synchronization method for wireless 1394 heterogeneous networks between 1394 and 802.15.3. If new method is adopted for various wireless 1394 products, consumer electronics devices such as DTV and Set-top Box or PC devices on a 1394 bus network can transmit real time data to the AV devices on the other 1394 bus in a different place via IEEE 802.15.3.

  • PDF

Issues in structural health monitoring employing smart sensors

  • Nagayama, T.;Sim, S.H.;Miyamori, Y.;Spencer, B.F. Jr.
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.299-320
    • /
    • 2007
  • Smart sensors densely distributed over structures can provide rich information for structural monitoring using their onboard wireless communication and computational capabilities. However, issues such as time synchronization error, data loss, and dealing with large amounts of harvested data have limited the implementation of full-fledged systems. Limited network resources (e.g. battery power, storage space, bandwidth, etc.) make these issues quite challenging. This paper first investigates the effects of time synchronization error and data loss, aiming to clarify requirements on synchronization accuracy and communication reliability in SHM applications. Coordinated computing is then examined as a way to manage large amounts of data.

Efficient Time Synchronization Scheme for OFDM based WLAN System (OFDM 기반 무선랜 시스템을 위한 효율적인 시간 동기 기법)

  • Cho, Mi-Suk;Kim, Jae-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.199-200
    • /
    • 2008
  • In this paper, efficient time synchronization scheme for OFDM based WLAN system and its performance simulation results are presented. Assuming AGC and packet detection is done within 7 short training symbols. This scheme consists of coarse and fine estimation, and exhibits robustness over fading and AWGN channel. The presented synchronization scheme achieves the success rate of about 96% over the SNR of 5 dB.

  • PDF

Deep Learning Based Group Synchronization for Networked Immersive Interactions (네트워크 환경에서의 몰입형 상호작용을 위한 딥러닝 기반 그룹 동기화 기법)

  • Lee, Joong-Jae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.373-380
    • /
    • 2022
  • This paper presents a deep learning based group synchronization that supports networked immersive interactions between remote users. The goal of group synchronization is to enable all participants to synchronously interact with others for increasing user presence Most previous methods focus on NTP-based clock synchronization to enhance time accuracy. Moving average filters are used to control media playout time on the synchronization server. As an example, the exponentially weighted moving average(EWMA) would be able to track and estimate accurate playout time if the changes in input data are not significant. However it needs more time to be stable for any given change over time due to codec and system loads or fluctuations in network status. To tackle this problem, this work proposes the Deep Group Synchronization(DeepGroupSync), a group synchronization based on deep learning that models important features from the data. This model consists of two Gated Recurrent Unit(GRU) layers and one fully-connected layer, which predicts an optimal playout time by utilizing the sequential playout delays. The experiments are conducted with an existing method that uses the EWMA and the proposed method that uses the DeepGroupSync. The results show that the proposed method are more robust against unpredictable or rapid network condition changes than the existing method.