In spite of a tendency automatizing manaufacturing processes, since power presses are highly repetitive at high speeds, they have still been using to a large extent in many industries. More often than not, press workers have to make decisions whether work materials are located well or not, they should rearrange them or not, and their bodies would be safe or not. If the decision would be wrong, of course, they cause severe damages to human workers so that many workers haven't been willing to work with them. However, with the help of computer technologies, it would be possible to aid the press workers' decisions, and to allow or prohibit them from inserting their hands between slide rams and dies. Thus, this research was aimed to evaluate and analyze possibilities of applying Image Processing Techniques for prevention of press accidents. Through a series of procedures including Capturing work sites and material, Image Enhancement, Contouring, and Edge Finding, work characteristics were obtained and analyzed. The results showed that there were somewhat differences in image characteristics between accident-induced work scenes and accident-free ones. Consequently, if the image analyses are well carried out in real time, they would give a successful help to human press workers.
Uniformity is a key feature of state-of-the-art infrared focal planed array (IRFPA) and infrared imaging system. Unlike traditional infrared telescope facility, a ground-based infrared radiant characteristics measurement system with an IRFPA not only provides a series of high signal-to-noise ratio (SNR) infrared image but also ensures the validity of radiant measurement data. Normally, a long integration time tends to produce a high SNR infrared image for infrared radiant characteristics radiometry system. In view of the variability of and uncertainty in the measured target's energy, the operation of switching the integration time and attenuators usually guarantees the guality of the infrared radiation measurement data obtainted during the infrared radiant characteristics radiometry process. Non-uniformity correction (NUC) coefficients in a given integration time are often applied to a specified integration time. If the integration time is switched, the SNR for the infrared imaging will degenerate rapidly. Considering the effect of the SNR for the infrared image and the infrared radiant characteristics radiometry above, we propose a-wide-dynamic-range NUC algorithm. In addition, this essasy derives and establishes the mathematical modal of the algorithm in detail. Then, we conduct verification experiments by using a ground-based MWIR(Mid-wave Infared) radiant characteristics radiometry system with an Ø400 mm aperture. The experimental results obtained using the proposed algorithm and the traditional algorithm for different integration time are compared. The statistical data shows that the average non-uniformity for the proposed algorithm decreased from 0.77% to 0.21% at 2.5 ms and from 1.33% to 0.26% at 5.5 ms. The testing results demonstrate that the usage of suggested algorithm can improve infrared imaging quality and radiation measurement accuracy.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.12a
/
pp.251-254
/
2001
본 논문에서는 Self Organizing Map을 이용하여 fMRI data를 분석해 보았다. fMRl (functional Magnetic Resonance Imaging)는 인간의 뇌에 대한 비 침투적 연구 방법 중 최근에 각광받고 있는 것이다. Motor task를 수행하고 있는 피험자로부터 image data를 얻어내어 SOM을 적용하여 clustering한 결과 motor cortex 영역이 뚜렷하게 clustering 되었음을 알 수 있었다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1993.06a
/
pp.861-864
/
1993
This research provides the results of a trial to generate the chaos by using nonlinear function constructed by fuzzy inference rules. The chaos generation function or chaotic behavior can be obtained by using Takagi-Sugeno fuzzy model with some constraint of the relationship of its parameters. Two examples are shown in this research. The first is simple example that construct of logistic image by fuzzy model. The second is more complicated one that provide the chaotic time series by non-linear autoregression based on fuzzy model. Simulated results are shown in these examples.
In order to further improve the accuracy and time efficiency of behavior recognition in intelligent monitoring scenarios, a human behavior recognition algorithm based on YOLO combined with LSTM and CNN is proposed. Using the real-time nature of YOLO target detection, firstly, the specific behavior in the surveillance video is detected in real time, and the depth feature extraction is performed after obtaining the target size, location and other information; Then, remove noise data from irrelevant areas in the image; Finally, combined with LSTM modeling and processing time series, the final behavior discrimination is made for the behavior action sequence in the surveillance video. Experiments in the MSR and KTH datasets show that the average recognition rate of each behavior reaches 98.42% and 96.6%, and the average recognition speed reaches 210ms and 220ms. The method in this paper has a good effect on the intelligence behavior recognition.
We outline a process for estimating Cole-Cole parameters from time-domain induced polarization (IP) data. The IP transients are all inverted to 2D Cole-Cole earth models that include resistivity, chargeability, relaxation time, and the frequency exponent. Our inversion algorithm consists of two stages. We first convert the measured voltage decay curves into time series of current-on time apparent resistivity to circumvent the negative chargeability problem. As a first step, a 4D inversion recovers the resistivity model at each time channel that increases monotonically with time. The desired intrinsic Cole-Cole parameters are then recovered by inverting the resistivity time series of each inversion block. In the second step, the Cole-Cole parameters can be estimated readily by setting the initial model close to the true value through a grid search method. Finally, through inversion procedures applied to synthetic data sets, we demonstrate that our algorithm can image the Cole-Cole earth models effectively.
As the utility of an optical satellite image with a high spatial resolution (i.e., fine-scale) has been emphasized, recently, various studies of the land surface monitoring using those have been widely carried out. However, the usefulness of fine-scale satellite images is limited because those are acquired at a low temporal resolution. To compensate for this limitation, the spatiotemporal data fusion can be applied to generate a synthetic image with a high spatio-temporal resolution by fusing multiple satellite images with different spatial and temporal resolutions. Since the spatio-temporal data fusion models have been developed for mid or low spatial resolution satellite images in the previous studies, it is necessary to evaluate the applicability of the developed models to the satellite images with a high spatial resolution. For this, this study evaluated the applicability of the developed spatio-temporal fusion models for KOMPSAT-3A and Sentinel-2 images. Here, an Enhanced Spatial and Temporal Adaptive Fusion Model (ESTARFM) and Spatial Time-series Geostatistical Deconvolution/Fusion Model (STGDFM), which use the different information for prediction, were applied. As a result of this study, it was found that the prediction performance of STGDFM, which combines temporally continuous reflectance values, was better than that of ESTARFM. Particularly, the prediction performance of STGDFM was significantly improved when it is difficult to simultaneously acquire KOMPSAT and Sentinel-2 images at a same date due to the low temporal resolution of KOMPSAT images. From the results of this study, it was confirmed that STGDFM, which has relatively better prediction performance by combining continuous temporal information, can compensate for the limitation to the low revisit time of fine-scale satellite images.
Classification is a substantial operation in data mining, and each element is distributed taking into account its feature values in the corresponding class. Metaheuristics have been widely used in attempts to solve satellite image classification problems. This article proposes a hybrid approach, the flower pigeons-inspired optimization algorithm (FPIO), and the local search method of the flower pollination algorithm is integrated into the pigeon-inspired algorithm. The efficiency and power of the proposed FPIO approach are displayed with a series of images, supported by computational results that demonstrate the cogency of the proposed classification method on satellite imagery. For this work, the Davies-Bouldin Index is used as an objective function. FPIO is applied to different types of images (synthetic, Alsat-2B, and Sentinel-2). Moreover, a comparative experiment between FPIO and the genetic algorithm genetic algorithm is conducted. Experimental results showed that GA outperformed FPIO in matters of time computing. However, FPIO provided better quality results with less confusion. The overall experimental results demonstrate that the proposed approach is an efficient method for satellite imagery classification.
International conference on construction engineering and project management
/
2020.12a
/
pp.399-408
/
2020
The construction industry is suffering from aging workers, frequent accidents, as well as low productivity. With the rapid development of information technologies in recent years, automatic construction, especially automatic cranes, is regarded as a promising solution for the above problems and attracting more and more attention. However, in practice, limited by the complexity and dynamics of construction environment, manual inspection which is time-consuming and error-prone is still the only way to recognize the search object for the operation of crane. To solve this problem, an image-processing-based automated object recognition approach is proposed in this paper, which is a fusion of Convolutional-Neutral-Network (CNN)-based and traditional object detections. The search object is firstly extracted from the background by the trained Faster R-CNN. And then through a series of image processing including Canny, Hough and Endpoints clustering analysis, the vertices of the search object can be determined to locate it in 3D space uniquely. Finally, the features (e.g., centroid coordinate, size, and color) of the search object are extracted for further recognition. The approach presented in this paper was implemented in OpenCV, and the prototype was written in Microsoft Visual C++. This proposed approach shows great potential for the automatic operation of crane. Further researches and more extensive field experiments will follow in the future.
Kai Liu;Leihong Zhang;Runchu Xu;Dawei Zhang;Haima Yang;Quan Sun
Current Optics and Photonics
/
v.8
no.5
/
pp.463-471
/
2024
Multimode fibers (MMFs) possess high information throughput and small core diameter, making them highly promising for applications such as endoscopy and communication. However, modal dispersion hinders the direct use of MMFs for image transmission. By training neural networks on time-series waveforms collected from MMFs it is possible to reconstruct images, transforming blurred speckle patterns into recognizable images. This paper proposes a fully convolutional neural-network model, MSMDFNet, for image restoration in MMFs. The network employs an encoder-decoder architecture, integrating multiscale convolutional modules in the decoding layers to enhance the receptive field for feature extraction. Additionally, attention mechanisms are incorporated from both spatial and channel dimensions, to improve the network's feature-perception capabilities. The algorithm demonstrates excellent performance on MNIST and Fashion-MNIST datasets collected through MMFs, showing significant improvements in various metrics such as SSIM.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.