• Title/Summary/Keyword: Time-series image

Search Result 327, Processing Time 0.027 seconds

Analysis of UAV-based Multispectral Reflectance Variability for Agriculture Monitoring (농업관측을 위한 다중분광 무인기 반사율 변동성 분석)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1379-1391
    • /
    • 2020
  • UAV in the agricultural application are capable of collecting ultra-high resolution image. It is possible to obtain timeliness images for phenological phases of the crop. However, the UAV uses a variety of sensors and multi-temporal images according to the environment. Therefore, it is essential to use normalized image data for time series image application for crop monitoring. This study analyzed the variability of UAV reflectance and vegetation index according to Aviation Image Making Environment to utilize the UAV multispectral image for agricultural monitoring time series. The variability of the reflectance according to environmental factors such as altitude, direction, time, and cloud was very large, ranging from 8% to 11%, but the vegetation index variability was stable, ranging from 1% to 5%. This phenomenon is believed to have various causes such as the characteristics of the UAV multispectral sensor and the normalization of the post-processing program. In order to utilize the time series of unmanned aerial vehicles, it is recommended to use the same ratio function as the vegetation index, and it is recommended to minimize the variability of time series images by setting the same time, altitude and direction as possible.

Calculation of surface image velocity fields by analyzing spatio-temporal volumes with the fast Fourier transform (고속푸리에변환을 이용한 시공간 체적 표면유속 산정 기법 개발)

  • Yu, Kwonkyu;Liu, Binghao
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.933-942
    • /
    • 2021
  • The surface image velocimetry was developed to measure river flow velocity safely and effectively in flood season. There are a couple of methods in the surface image velocimetry. Among them the spatio-temporal image velocimetry is in the spotlight, since it can estimate mean velocity for a period of time. For the spatio-temporal image velocimetry analyzes a series of images all at once, it can reduce analyzing time so much. It, however, has a little drawback to find out the main flow direction. If the direction of spatio-temporal image does not coincide to the main flow direction, it may cause singnificant error in velocity. The present study aims to propose a new method to find out the main flow direction by using a fast Fourier transform(FFT) to a spatio-temporal (image) volume, which were constructed by accumulating the river surface images along the time direction. The method consists of two steps; the first step for finding main flow direction in space image and the second step for calculating the velocity magnitude in main flow direction in spatio-temporal image. In the first step a time-accumulated image was made from the spatio-temporal volume along the time direction. We analyzed this time-accumulated image by using FFT and figured out the main flow direction from the transformed image. Then a spatio-temporal image in main flow direction was extracted from the spatio-temporal volume. Once again, the spatio-temporal image was analyzed by FFT and velocity magnitudes were calculated from the transformed image. The proposed method was applied to a series of artificial images for error analysis. It was shown that the proposed method could analyze two-dimensional flow field with fairly good accuracy.

NIIRS ESTIMATION USING THE GENERAL IMAGE-QUALITY EQUATION FOR MONITORING IMAGE DEGRADATION

  • Kim, Dong-Wook;Kim, Tae-Jung;Kim, Hee-Seob
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.53-56
    • /
    • 2008
  • Generally, the quality of satellite images is expressed by GSD (Ground Sample Distance), MTF (Modulation Transfer Function) and SNR (Signal to Noise Ratio). However, these factors are technology-oriented and do not explain interpretability of satellite images. We need a standardized index which shows standard of interpretability. In this study, we estimated NIIRS (National Imagery Interpretability Rating Scale) through the GIQE (General Image Quality Equation) which is able to judge image interpretability with the standardized index. Traditionally, NIIRS has been determined manually by specialized image analysts. We used the GIQE in order to reduce inefficiency and high costs cause by manual interpretation and to produce accurate NIIRS. For monitoring image degradation, we estimated GIQE physical parameters from image analysis and carried out time series analysis about the quality of the KOMPSAT-1 images. On all of the tests, we were able to identify the image degradation due to the changing time. This indicates that NIIRS derived from GIQE will be used for image degradation indicator.

  • PDF

Image Processing for Video Images of Buoy Motion

  • Kim, Baeck-Oon;Cho, Hong-Yeon
    • Ocean Science Journal
    • /
    • v.40 no.4
    • /
    • pp.213-220
    • /
    • 2005
  • In this paper, image processing technique that reduces video images of buoy motion to yield time series of image coordinates of buoy objects will be investigated. The buoy motion images are noisy due to time-varying brightness as well as non-uniform background illumination. The occurrence of boats, wakes, and wind-induced white caps interferes significantly in recognition of buoy objects. Thus, semi-automated procedures consisting of object recognition and image measurement aspects will be conducted. These offer more satisfactory results than a manual process. Spectral analysis shows that the image coordinates of buoy objects represent wave motion well, indicating its usefulness in the analysis of wave characteristics.

Tool Fracture Detection Using System Identification (시스템인식을 이용한 공구파손 검출)

  • 사승윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.119-123
    • /
    • 1996
  • The demands for robotic and automatic system are continually increasing in manufacturing fields. There were so many studies to monitor and predict system, but it were mainly relied upon measuring of cutting force, current of motor spindle and using acoustic sensor, etc. In this study digital image of time series sequence was acquired taking advantage of optical technique. Then, mean square error was obtained from it and was available for useful observation data. The parameter was estimated using PAA(parameter adaptation algorithm) from observation data. AR model was selected for system model, fifth order was decided according to parameter estimation. Uncorrelation test was also carried out to verify convergence of parameter. Through the proceedings, we found there was a system stability.

  • PDF

Convolutional Neural Network and Data Mutation for Time Series Pattern Recognition (컨벌루션 신경망과 변종데이터를 이용한 시계열 패턴 인식)

  • Ahn, Myong-ho;Ryoo, Mi-hyeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.727-730
    • /
    • 2016
  • TSC means classifying time series data based on pattern. Time series data is quite common data type and it has high potential in many fields, so data mining and machine learning have paid attention for long time. In traditional approach, distance and dictionary based methods are quite popular. but due to time scale and random noise problems, it has clear limitation. In this paper, we propose a novel approach to deal with these problems with CNN and data mutation. CNN is regarded as proven neural network model in image recognition, and could be applied to time series pattern recognition by extracting pattern. Data mutation is a way to generate mutated data with different methods to make CNN more robust and solid. The proposed method shows better performance than traditional approach.

  • PDF

KOMPSAT Optical Image Registration via Deep-Learning Based OffsetNet Model (딥러닝 기반 OffsetNet 모델을 통한 KOMPSAT 광학 영상 정합)

  • Jin-Woo Yu;Che-Won Park;Hyung-Sup Jung
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1707-1720
    • /
    • 2023
  • With the increase in satellite time series data, the utility of remote sensing data is growing. In the analysis of time series data, the relative positional accuracy between images has a significant impact on the results, making image registration essential for correction. In recent years, research on image registration has been increasing by applying deep learning, which outperforms existing image registration algorithms. To train deep learning-based registration models, a large number of image pairs are required. Additionally, creating a correlation map between the data of existing deep learning models and applying additional computations to extract registration points is inefficient. To overcome these drawbacks, this study developed a data augmentation technique for training image registration models and applied it to OffsetNet, a registration model that predicts the offset amount itself, to perform image registration for KOMSAT-2, -3, and -3A. The results of the model training showed that OffsetNet accurately predicted the offset amount for the test data, enabling effective registration of the master and slave images.

An Index-Building Method for Boundary Matching that Supports Arbitrary Partial Denoising (임의의 부분 노이즈제거를 지원하는 윤곽선 매칭의 색인 구축 방법)

  • Kim, Bum-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1343-1350
    • /
    • 2019
  • Converting boundary images to time-series makes it feasible to perform boundary matching even on a very large image database, which is very important for interactive and fast matching. In recent research, there has been an attempt to perform fast matching considering partial denoising by converting the boundary image into time series. In this paper, to improve performance, we propose an index-building method considering all possible arbitrary denoising parameters for removing arbitrary partial noises. This is a challenging problem since the partial denoising boundary matching must be considered for all possible denoising parameters. We propose an efficient single index-building algorithm by constructing a minimum bounding rectangle(MBR) according to all possible denoising parameters. The results of extensive experiments conducted show that our index-based matching method improves the search performance up to 46.6 ~ 4023.6 times.

Unsupervised Learning-Based Pipe Leak Detection using Deep Auto-Encoder

  • Yeo, Doyeob;Bae, Ji-Hoon;Lee, Jae-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.21-27
    • /
    • 2019
  • In this paper, we propose a deep auto-encoder-based pipe leak detection (PLD) technique from time-series acoustic data collected by microphone sensor nodes. The key idea of the proposed technique is to learn representative features of the leak-free state using leak-free time-series acoustic data and the deep auto-encoder. The proposed technique can be used to create a PLD model that detects leaks in the pipeline in an unsupervised learning manner. This means that we only use leak-free data without labeling while training the deep auto-encoder. In addition, when compared to the previous supervised learning-based PLD method that uses image features, this technique does not require complex preprocessing of time-series acoustic data owing to the unsupervised feature extraction scheme. The experimental results show that the proposed PLD method using the deep auto-encoder can provide reliable PLD accuracy even considering unsupervised learning-based feature extraction.

A Case Study on Morten Lasskogen's Cloud Series - Based on 3ds Max and Unreal Engine Technology -

  • JinXuan Zhao;Xinyi Shan;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.96-101
    • /
    • 2023
  • Digital art creation has become an indispensable part of today's society, but traditional digital art production methods have been difficult to meet the growing creative needs of artists. Therefore, this study takes the cloud series works of artist Morten Lasskogen as an example and explores the application value of 3D Max and Unreal Engine in digital art created by analyzing the lighting effects in the works of art. This research aims to form reference materials through actual case analysis and provide artists with more efficient ideas for digital art creation.