• Title/Summary/Keyword: Time-series image

Search Result 327, Processing Time 0.026 seconds

Research for 3-D Information Reconstruction by Appling Composition Focus Measure Function to Time-series Image (복합초점함수의 시간열 영상적용을 통한 3 차원정보복원에 관한 연구)

  • 김정길;한영준;한헌수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.426-429
    • /
    • 2004
  • To reconstruct the 3-D information of a irregular object, this paper proposes a new method applying the composition focus measure to time-series image. A focus measure function is carefully selected because a focus measure is apt to be affected by the working environment and the characteristics of an object. The proposed focus measure function combines the variance measure which is robust to noise and the Laplacian measure which, regardless of an object shape, has a good performance in calculating the focus measure. And the time-series image, which considers the object shape, is proposed in order to efficiently applying the interesting window. This method, first, divides the image frame by the window. Second, the composition focus measure function be applied to the windows, and the time-series image is constructed. Finally, the 3-D information of an object is reconstructed from the time-series images considering the object shape. The experimental results have shown that the proposed method is suitable algorithm to 3-D reconstruction of an irregular object.

  • PDF

Partial Denoising Boundary Image Matching Based on Time-Series Data (시계열 데이터 기반의 부분 노이즈 제거 윤곽선 이미지 매칭)

  • Kim, Bum-Soo;Lee, Sanghoon;Moon, Yang-Sae
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.943-957
    • /
    • 2014
  • Removing noise, called denoising, is an essential factor for the more intuitive and more accurate results in boundary image matching. This paper deals with a partial denoising problem that tries to allow a limited amount of partial noise embedded in boundary images. To solve this problem, we first define partial denoising time-series which can be generated from an original image time-series by removing a variety of partial noises and propose an efficient mechanism that quickly obtains those partial denoising time-series in the time-series domain rather than the image domain. We next present the partial denoising distance, which is the minimum distance from a query time-series to all possible partial denoising time-series generated from a data time-series, and we use this partial denoising distance as a similarity measure in boundary image matching. Using the partial denoising distance, however, incurs a severe computational overhead since there are a large number of partial denoising time-series to be considered. To solve this problem, we derive a tight lower bound for the partial denoising distance and formally prove its correctness. We also propose range and k-NN search algorithms exploiting the partial denoising distance in boundary image matching. Through extensive experiments, we finally show that our lower bound-based approach improves search performance by up to an order of magnitude in partial denoising-based boundary image matching.

Anomaly Detection of Big Time Series Data Using Machine Learning (머신러닝 기법을 활용한 대용량 시계열 데이터 이상 시점탐지 방법론 : 발전기 부품신호 사례 중심)

  • Kwon, Sehyug
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.33-38
    • /
    • 2020
  • Anomaly detection of Machine Learning such as PCA anomaly detection and CNN image classification has been focused on cross-sectional data. In this paper, two approaches has been suggested to apply ML techniques for identifying the failure time of big time series data. PCA anomaly detection to identify time rows as normal or abnormal was suggested by converting subjects identification problem to time domain. CNN image classification was suggested to identify the failure time by re-structuring of time series data, which computed the correlation matrix of one minute data and converted to tiff image format. Also, LASSO, one of feature selection methods, was applied to select the most affecting variables which could identify the failure status. For the empirical study, time series data was collected in seconds from a power generator of 214 components for 25 minutes including 20 minutes before the failure time. The failure time was predicted and detected 9 minutes 17 seconds before the failure time by PCA anomaly detection, but was not detected by the combination of LASSO and PCA because the target variable was binary variable which was assigned on the base of the failure time. CNN image classification with the train data of 10 normal status image and 5 failure status images detected just one minute before.

Symmetric-Invariant Boundary Image Matching Based on Time-Series Data (시계열 데이터 기반의 대칭-불변 윤곽선 이미지 매칭)

  • Lee, Sanghun;Bang, Junsang;Moon, Seongwoo;Moon, Yang-Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.10
    • /
    • pp.431-438
    • /
    • 2015
  • In this paper we address the symmetric-invariant problem in boundary image matching. Supporting symmetric transformation is an important factor in boundary image matching to get more intuitive and more accurate matching results. However, the previous boundary image matching handled rotation transformation only without considering symmetric transformation. In this paper, we propose symmetric-invariant boundary image matching which supports the symmetric transformation as well as the rotation transformation. For this, we define the concept of image symmetry and formally prove that rotation-invariant matching of using a symmetric image always returns the same result for every symmetric angle. For efficient symmetric transformation, we also present how to efficiently extract the symmetric time-series from an image boundary. Finally, we formally prove that our symmetric-invariant matching produces the same result for two approaches: one is using the time-series extracted from the symmetric image; another is using the time-series directly obtained from the original image time-series by symmetric transformation. Experimental results show that the proposed symmetric-invariant boundary image matching obtains more accurate and intuitive results than the previous rotation-invariant boundary image matching. These results mean that our symmetric-invariant solution is an excellent approach that solves the image symmetry problem in time-series domain.

Noise Control Boundary Image Matching Using Time-Series Moving Average Transform (시계열 이동평균 변환을 이용한 노이즈 제어 윤곽선 이미지 매칭)

  • Kim, Bum-Soo;Moon, Yang-Sae;Kim, Jin-Ho
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.327-340
    • /
    • 2009
  • To achieve the noise reduction effect in boundary image matching, we use the moving average transform of time-series matching. Our motivation is based on an intuition that using the moving average transform we may exploit the noise reduction effect in boundary image matching as in time-series matching. To confirm this simple intuition, we first propose $\kappa$-order image matching, which applies the moving average transform to boundary image matching. A boundary image can be represented as a sequence in the time-series domain, and our $\kappa$-order image matching identifies similar images in this time-series domain by comparing the $\kappa$-moving average transformed sequences. Next, we propose an index-based matching method that efficiently performs $\kappa$-order image matching on a large volume of image databases, and formally prove the correctness of the index-based method. Moreover, we formally analyze the relationship between an order $\kappa$ and its matching result, and present a systematic way of controlling the noise reduction effect by changing the order $\kappa$. Experimental results show that our $\kappa$-order image matching exploits the noise reduction effect, and our index-based matching method outperforms the sequential scan by one or two orders of magnitude.

Design and Implementation of a Boundary Matching System Supporting Partial Denoising for Large Image Databases

  • Kim, Bum-Soo;Kim, Jin-Uk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.35-40
    • /
    • 2019
  • In this paper, we design and implement a partial denoising boundary matching system using indexing techniques. Converting boundary images to time-series makes it feasible to perform a fast search using indexes even on a very large image database. Thus, using this converting method we develop a client-server system based on the previous partial denoising research in the GUI(graphical user interface) environment. The client first converts a query image given by a user to a time-series and sends denoising parameters and the tolerance with this time-series to the server. The server identifies similar images from the index by evaluating a range query, which is constructed using inputs given from the client and sends the resulting images to the client. Experimental results show that our system provides many intuitive and accurate matching results.

Adaptive Reconstruction of NDVI Image Time Series for Monitoring Vegetation Changes (지표면 식생 변화 감시를 위한 NDVI 영상자료 시계열 시리즈의 적응 재구축)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Irregular temporal sampling is a common feature of geophysical and biological time series in remote sensing. This study proposes an on-line system for reconstructing observation image series including bad or missing observation that result from mechanical problems or sensing environmental condition. The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. An adaptive feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. In this study, the Normalized Difference Vegetation Index (NDVI) image was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula, and the adaptive reconstruction of harmonic model was then applied to the NDVI time series from 1996 to 2000 for tracking changes on the ground vegetation. The results show that the adaptive approach is potentially very effective for continuously monitoring changes on near-real time.

Automatic Classification Method for Time-Series Image Data using Reference Map (Reference Map을 이용한 시계열 image data의 자동분류법)

  • Hong, Sun-Pyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.58-65
    • /
    • 1997
  • A new automatic classification method with high and stable accuracy for time-series image data is presented in this paper. This method is based on prior condition that a classified map of the target area already exists, or at least one of the time-series image data had been classified. The classified map is used as a reference map to specify training areas of classification categories. The new automatic classification method consists of five steps, i.e., extraction of training data using reference map, detection of changed pixels based upon the homogeneity of training data, clustering of changed pixels, reconstruction of training data, and classification as like maximum likelihood classifier. In order to evaluate the performance of this method qualitatively, four time-series Landsat TM image data were classified by using this method and a conventional method which needs a skilled operator. As a results, we could get classified maps with high reliability and fast throughput, without a skilled operator.

  • PDF

Generation of Time-Series Data for Multisource Satellite Imagery through Automated Satellite Image Collection (자동 위성영상 수집을 통한 다종 위성영상의 시계열 데이터 생성)

  • Yunji Nam;Sungwoo Jung;Taejung Kim;Sooahm Rhee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1085-1095
    • /
    • 2023
  • Time-series data generated from satellite data are crucial resources for change detection and monitoring across various fields. Existing research in time-series data generation primarily relies on single-image analysis to maintain data uniformity, with ongoing efforts to enhance spatial and temporal resolutions by utilizing diverse image sources. Despite the emphasized significance of time-series data, there is a notable absence of automated data collection and preprocessing for research purposes. In this paper, to address this limitation, we propose a system that automates the collection of satellite information in user-specified areas to generate time-series data. This research aims to collect data from various satellite sources in a specific region and convert them into time-series data, developing an automatic satellite image collection system for this purpose. By utilizing this system, users can collect and extract data for their specific regions of interest, making the data immediately usable. Experimental results have shown the feasibility of automatically acquiring freely available Landsat and Sentinel images from the web and incorporating manually inputted high-resolution satellite images. Comparisons between automatically collected and edited images based on high-resolution satellite data demonstrated minimal discrepancies, with no significant errors in the generated output.

Adaptive Reconstruction of Harmonic Time Series Using Point-Jacobian Iteration MAP Estimation and Dynamic Compositing: Simulation Study

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.79-89
    • /
    • 2008
  • Irregular temporal sampling is a common feature of geophysical and biological time series in remote sensing. This study proposes an on-line system for reconstructing observation image series contaminated by noises resulted from mechanical problems or sensing environmental condition. There is also a high likelihood that during the data acquisition periods the target site corresponding to any given pixel may be covered by fog or cloud, thereby resulting in bad or missing observation. The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. A feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. The experimental results of this simulation study show the potentiality of the proposed system to reconstruct the image series observed by imperfect sensing technology from the environment which are frequently influenced by bad weather. This study provides fundamental information on the elements of the proposed system for right usage in application.