• 제목/요약/키워드: Time-series data prediction

검색결과 613건 처리시간 0.022초

Implementation of Fund Recommendation System Using Machine Learning

  • Park, Chae-eun;Lee, Dong-seok;Nam, Sung-hyun;Kwon, Soon-kak
    • Journal of Multimedia Information System
    • /
    • 제8권3호
    • /
    • pp.183-190
    • /
    • 2021
  • In this paper, we implement a system for a fund recommendation based on the investment propensity and for a future fund price prediction. The investment propensity is classified by scoring user responses to series of questions. The proposed system recommends the funds with a suitable risk rating to the investment propensity of the user. The future fund prices are predicted by Prophet model which is one of the machine learning methods for time series data prediction. Prophet model predicts future fund prices by learning the parameters related to trend changes. The prediction by Prophet model is simple and fast because the temporal dependency for predicting the time-series data can be removed. We implement web pages for the fund recommendation and for the future fund price prediction.

시계열 분해 및 데이터 증강 기법 활용 건화물운임지수 예측 (Forecasting Baltic Dry Index by Implementing Time-Series Decomposition and Data Augmentation Techniques)

  • 한민수;유성진
    • 품질경영학회지
    • /
    • 제50권4호
    • /
    • pp.701-716
    • /
    • 2022
  • Purpose: This study aims to predict the dry cargo transportation market economy. The subject of this study is the BDI (Baltic Dry Index) time-series, an index representing the dry cargo transport market. Methods: In order to increase the accuracy of the BDI time-series, we have pre-processed the original time-series via time-series decomposition and data augmentation techniques and have used them for ANN learning. The ANN algorithms used are Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) to compare and analyze the case of learning and predicting by applying time-series decomposition and data augmentation techniques. The forecast period aims to make short-term predictions at the time of t+1. The period to be studied is from '22. 01. 07 to '22. 08. 26. Results: Only for the case of the MAPE (Mean Absolute Percentage Error) indicator, all ANN models used in the research has resulted in higher accuracy (1.422% on average) in multivariate prediction. Although it is not a remarkable improvement in prediction accuracy compared to uni-variate prediction results, it can be said that the improvement in ANN prediction performance has been achieved by utilizing time-series decomposition and data augmentation techniques that were significant and targeted throughout this study. Conclusion: Nevertheless, due to the nature of ANN, additional performance improvements can be expected according to the adjustment of the hyper-parameter. Therefore, it is necessary to try various applications of multiple learning algorithms and ANN optimization techniques. Such an approach would help solve problems with a small number of available data, such as the rapidly changing business environment or the current shipping market.

ProphetNet 모델을 활용한 시계열 데이터의 열화 패턴 기반 Health Index 연구 (A Study on the Health Index Based on Degradation Patterns in Time Series Data Using ProphetNet Model)

  • 원선주;김용수
    • 산업경영시스템학회지
    • /
    • 제46권3호
    • /
    • pp.123-138
    • /
    • 2023
  • The Fourth Industrial Revolution and sensor technology have led to increased utilization of sensor data. In our modern society, data complexity is rising, and the extraction of valuable information has become crucial with the rapid changes in information technology (IT). Recurrent neural networks (RNN) and long short-term memory (LSTM) models have shown remarkable performance in natural language processing (NLP) and time series prediction. Consequently, there is a strong expectation that models excelling in NLP will also excel in time series prediction. However, current research on Transformer models for time series prediction remains limited. Traditional RNN and LSTM models have demonstrated superior performance compared to Transformers in big data analysis. Nevertheless, with continuous advancements in Transformer models, such as GPT-2 (Generative Pre-trained Transformer 2) and ProphetNet, they have gained attention in the field of time series prediction. This study aims to evaluate the classification performance and interval prediction of remaining useful life (RUL) using an advanced Transformer model. The performance of each model will be utilized to establish a health index (HI) for cutting blades, enabling real-time monitoring of machine health. The results are expected to provide valuable insights for machine monitoring, evaluation, and management, confirming the effectiveness of advanced Transformer models in time series analysis when applied in industrial settings.

전처리과정을 갖는 시계열데이터의 퍼지예측 (A Fuzzy Time-Series Prediction with Preprocessing)

  • 윤상훈;이철희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.666-668
    • /
    • 2000
  • In this paper, a fuzzy prediction method is proposed for time series data having uncertainty and non-stationary characteristics. Conventional methods, which use past data directly in prediction procedure, cannot properly handle non-stationary data whose long-term mean is floating. To cope with this problem, a data preprocessing technique utilizing the differences of original time series data is suggested. The difference sets are established from data. And the optimal difference set is selected for input of fuzzy predictor. The proposed method based the Takigi-Sugeno-Kang(TSK or TS) fuzzy rule. Computer simulations show improved results for various time series.

  • PDF

정보기준과 다중 중심점을 활용한 클러스터별 예측 (Prediction on Clusters by using Information Criterion and Multiple Seeds)

  • 조영희;이계성
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.145-152
    • /
    • 2010
  • 본 연구에서는 시계열 자료를 베이지안 정보기준을 통해 클러스터링 한다. 보다 안정적인 클러스터를 생산하기 위해 다중 중심점을 모델링한 후 이를 이용하여 클러스터를 생성시킨다. 대상 시계열 자료에 대해 예측할 경우 클러스터에 속한 시계열 자료 중 가장 유사한 시계열 자료를 선택하여 모델링한다. 모델로부터 마코프 규칙을 유도해 내고 이 규칙을 이용해 예측정확도를 측정한다. 시계열 자료를 단독으로 모델링한 후 예측한 결과보다 클러스터에 속한 유사시계열 모델링을 통한 예측정확도가 좀 더 높았음을 확인하였다.

다중 유사 시계열 모델링 방법을 통한 예측정확도 개선에 관한 연구 (A Study on Improving Prediction Accuracy by Modeling Multiple Similar Time Series)

  • 조영희;이계성
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.137-143
    • /
    • 2010
  • 본 연구에서는 시계열 자료처리를 통해 예측정확도를 개선시키는 방안에 대해 연구하였다. 단일 예측 모형의 단점을 개선하기 위해 유사한 시계열 자료를 선정하여 이들로부터 모델을 유도하였다. 이 모델로부터 유효 규칙을 생성해내 향후 자료의 변화를 예측하였다. 실험을 통해 예측정확도에 있어 유의한 수준의 개선효과가 있었음을 확인하였다. 예측모델 구성을 위해 고정구간과 가변구간을 두고 모델링하여 고정구간, 창이동, 누적구간 방식으로 구분하여 예측정확도를 측정하였다. 이중 누적구간 방식이 가장 정확도가 높게 나왔다.

Development of the Roundwood Demand Prediction Model

  • Kim, Dong-Jun
    • 한국산림과학회지
    • /
    • 제95권2호
    • /
    • pp.203-208
    • /
    • 2006
  • This study compared the roundwood demand prediction accuracy of econometric and time-series models using Korean data. The roundwood was divided into softwood and hardwood by species. The econometric model of roundwood demand was specified with four explanatory variables; own price, substitute price, gross domestic product, dummy. The time-series model was specified with lagged endogenous variable. The dummy variable reflected the abrupt decrease in roundwood demand in the late 1990's in the case of softwood roundwood, and the boom of plywood export in the late 1970's in the case of hardwood roundwood. On the other hand, the prediction accuracy was estimated on the basis of Residual Mean Square Errors(RMSE). The results showed that the softwood roundwood demand prediction can be performed more accurately by econometric model than by time-series model. However, the hardwood roundwood demand prediction accuracy was similar in the case of using econometric and time-series model.

LSTM 인공신경망을 이용한 자동차 A/S센터 수리 부품 수요 예측 모델 연구 (A Study on the Demand Prediction Model for Repair Parts of Automotive After-sales Service Center Using LSTM Artificial Neural Network)

  • 정동균;박영식
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제31권3호
    • /
    • pp.197-220
    • /
    • 2022
  • Purpose The purpose of this study is to identifies the demand pattern categorization of repair parts of Automotive After-sales Service(A/S) and proposes a demand prediction model for Auto repair parts using Long Short-Term Memory (LSTM) of artificial neural networks (ANN). The optimal parts inventory quantity prediction model is implemented by applying daily, weekly, and monthly the parts demand data to the LSTM model for the Lumpy demand which is irregularly in a specific period among repair parts of the Automotive A/S service. Design/methodology/approach This study classified the four demand pattern categorization with 2 years demand time-series data of repair parts according to the Average demand interval(ADI) and coefficient of variation (CV2) of demand size. Of the 16,295 parts in the A/S service shop studied, 96.5% had a Lumpy demand pattern that large quantities occurred at a specific period. lumpy demand pattern's repair parts in the last three years is predicted by applying them to the LSTM for daily, weekly, and monthly time-series data. as the model prediction performance evaluation index, MAPE, RMSE, and RMSLE that can measure the error between the predicted value and the actual value were used. Findings As a result of this study, Daily time-series data were excellently predicted as indicators with the lowest MAPE, RMSE, and RMSLE values, followed by Weekly and Monthly time-series data. This is due to the decrease in training data for Weekly and Monthly. even if the demand period is extended to get the training data, the prediction performance is still low due to the discontinuation of current vehicle models and the use of alternative parts that they are contributed to no more demand. Therefore, sufficient training data is important, but the selection of the prediction demand period is also a critical factor.

최적 TS 퍼지 모델 기반 다중 모델 예측 시스템의 구현과 시계열 예측 응용 (Multiple Model Prediction System Based on Optimal TS Fuzzy Model and Its Applications to Time Series Forecasting)

  • 방영근;이철희
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.101-109
    • /
    • 2008
  • In general, non-stationary or chaos time series forecasting is very difficult since there exists a drift and/or nonlinearities in them. To overcome this situation, we suggest a new prediction method based on multiple model TS fuzzy predictors combined with preprocessing of time series data, where, instead of time series data, the differences of them are applied to predictors as input. In preprocessing procedure, the candidates of optimal difference interval are determined by using con-elation analysis and corresponding difference data are generated. And then, for each of them, TS fuzzy predictor is constructed by using k-means clustering algorithm and least squares method. Finally, the best predictor which minimizes the performance index is selected and it works on hereafter for prediction. Computer simulation is performed to show the effectiveness and usefulness of our method.

  • PDF

정보기준과 효율적 자료길이를 활용한 시계열자료 운동패턴 예측 연구 (A Study on Prediction the Movement Pattern of Time Series Data using Information Criterion and Effective Data Length)

  • 전진호;김민수
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권1호
    • /
    • pp.101-107
    • /
    • 2013
  • 현실세계에서는 광범위한 업무영역에서 대용량의 시계열자료들이 실시간으로 발생되고 있다. 하지만 동적인 특징으로 표현되는 시계열자료들의 이해와 설명을 위한 최적의 모형을 결정하는 일은 쉽지가 않다. 이러한 시계열자료들의 특징을 잘 설명할 수 있는 모형을 추정하기 위하여 본 연구에서는 시계열데이터의 모형추정에 적합한 은닉마아코프모델을 통해 시계열자료의 장, 단기 예측모형을 추정하였고 이를 통해 미래의 운동패턴예측을 확인하였다. 실제 주식시장의 여러 자료들을 통해 최적의 모형추정을 위한 정보기준과 가장 효율적인 자료길이를 통해 모형의 상태수를 정확하게 추정하는지를 확인하였다. 실험결과 유효한 상태의 수 추정과 단기의 예측이 장기예측보다 유사운동패턴 예측률이 더욱 유사함을 확인하였다.