• Title/Summary/Keyword: Time-series Model

Search Result 2,673, Processing Time 0.036 seconds

Estimation on the Port Container Volume in Incheon Port

  • Kim, Jung-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.33 no.4
    • /
    • pp.277-282
    • /
    • 2009
  • This paper estimated the container volumes for the Incheon port with univariate time series. As best suited models Winters' additive model, ARIMA model,and Winters' additive model were selected by import-export, coastal, and transshipment volume respectively, based on the data of monthly volume by October 2008 since January 2001. This study supposed the import-export container volumes would be decreased by 14% against that in 2008 and would have been recovered to the increasing trend of the volumes beyond the fourth quarter of 2010. The future import-export and transshipment volumes showed the increasing trend beyond 2011, while the coastal volumes would be on the stagnation. The yearly container volumes were finally forecasted as 1,705, 2,432, and 3,341 thousand TEU in 2011, 2015, and 2020 respectively.

Estimation of Random Coefficient AR(1) Model for Panel Data

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.4
    • /
    • pp.529-544
    • /
    • 1996
  • This paper deals with the problem of estimating the autoregressive random coefficient of a first-order random coefficient autoregressive time series model applied to panel data of time series. The autoregressive random coefficients across individual units are assumed to be a random sample from a truncated normal distribution with the space (-1, 1) for stationarity. The estimates of random coefficients are obtained by an empirical Bayes procedure using the estimates of model parameters. Also, a Monte Carlo study is conducted to support the estimation procedure proposed in this paper. Finally, we apply our results to the economic panel data in Liu and Tiao(1980).

  • PDF

Short-Term Load Forecasting using Multiple Time-Series Model (다변수 시계열 분석에 의한 단기부하예측)

  • Lee, Kyung-Hun;Lee, Yun-Ho;Kim, Jin-O;Lee, Hyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.230-232
    • /
    • 2001
  • This paper presents a model for short-term load forecasting using multiple time-series. We made one-hour ahead load forecasting without classifying load data according to daily load patterns(e.g. weekday. weekend and holiday) To verify its effectiveness. the results are compared with those of neuro-fuzzy forecasting model(5). The results show that the proposed model has more accurate estimate in forecasting.

  • PDF

Modeling of Hydrologic Time Series using Stochastic Neural Networks Approach (추계학적 신경망 접근법을 이용한 수문학적 시계열의 모형화)

  • Kim, Seong-Won;Kim, Jeong-Heon;Park, Gi-Beom
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1346-1349
    • /
    • 2010
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training and test performances consist of the historic, the generated, and the mixed data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

Mean-VaR Portfolio: An Empirical Analysis of Price Forecasting of the Shanghai and Shenzhen Stock Markets

  • Liu, Ximei;Latif, Zahid;Xiong, Daoqi;Saddozai, Sehrish Khan;Wara, Kaif Ul
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1201-1210
    • /
    • 2019
  • Stock price is characterized as being mutable, non-linear and stochastic. These key characteristics are known to have a direct influence on the stock markets globally. Given that the stock price data often contain both linear and non-linear patterns, no single model can be adequate in modelling and predicting time series data. The autoregressive integrated moving average (ARIMA) model cannot deal with non-linear relationships, however, it provides an accurate and effective way to process autocorrelation and non-stationary data in time series forecasting. On the other hand, the neural network provides an effective prediction of non-linear sequences. As a result, in this study, we used a hybrid ARIMA and neural network model to forecast the monthly closing price of the Shanghai composite index and Shenzhen component index.

Prediction of Dissolved Oxygen in Jindong Bay Using Time Series Analysis (시계열 분석을 이용한 진동만의 용존산소량 예측)

  • Han, Myeong-Soo;Park, Sung-Eun;Choi, Youngjin;Kim, Youngmin;Hwang, Jae-Dong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.382-391
    • /
    • 2020
  • In this study, we used artificial intelligence algorithms for the prediction of dissolved oxygen in Jindong Bay. To determine missing values in the observational data, we used the Bidirectional Recurrent Imputation for Time Series (BRITS) deep learning algorithm, Auto-Regressive Integrated Moving Average (ARIMA), a widely used time series analysis method, and the Long Short-Term Memory (LSTM) deep learning method were used to predict the dissolved oxygen. We also compared accuracy of ARIMA and LSTM. The missing values were determined with high accuracy by BRITS in the surface layer; however, the accuracy was low in the lower layers. The accuracy of BRITS was unstable due to the experimental conditions in the middle layer. In the middle and bottom layers, the LSTM model showed higher accuracy than the ARIMA model, whereas the ARIMA model showed superior performance in the surface layer.

Online condition assessment of high-speed trains based on Bayesian forecasting approach and time series analysis

  • Zhang, Lin-Hao;Wang, You-Wu;Ni, Yi-Qing;Lai, Siu-Kai
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.705-713
    • /
    • 2018
  • High-speed rail (HSR) has been in operation and development in many countries worldwide. The explosive growth of HSR has posed great challenges for operation safety and ride comfort. Among various technological demands on high-speed trains, vibration is an inevitable problem caused by rail/wheel imperfections, vehicle dynamics, and aerodynamic instability. Ride comfort is a key factor in evaluating the operational performance of high-speed trains. In this study, online monitoring data have been acquired from an in-service high-speed train for condition assessment. The measured dynamic response signals at the floor level of a train cabin are processed by the Sperling operator, in which the ride comfort index sequence is used to identify the train's operation condition. In addition, a novel technique that incorporates salient features of Bayesian inference and time series analysis is proposed for outlier detection and change detection. The Bayesian forecasting approach enables the prediction of conditional probabilities. By integrating the Bayesian forecasting approach with time series analysis, one-step forecasting probability density functions (PDFs) can be obtained before proceeding to the next observation. The change detection is conducted by comparing the current model and the alternative model (whose mean value is shifted by a prescribed offset) to determine which one can well fit the actual observation. When the comparison results indicate that the alternative model performs better, then a potential change is detected. If the current observation is a potential outlier or change, Bayes factor and cumulative Bayes factor are derived for further identification. A significant change, if identified, implies that there is a great alteration in the train operation performance due to defects. In this study, two illustrative cases are provided to demonstrate the performance of the proposed method for condition assessment of high-speed trains.

Implementation of CNN-based water level prediction model for river flood prediction (하천 홍수 예측을 위한 CNN 기반의 수위 예측 모델 구현)

  • Cho, Minwoo;Kim, Sujin;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1471-1476
    • /
    • 2021
  • Flood damage can cause floods or tsunamis, which can result in enormous loss of life and property. In this regard, damage can be reduced by making a quick evacuation decision through flood prediction, and many studies are underway in this field to predict floods using time series data. In this paper, we propose a CNN-based time series prediction model. A CNN-based water level prediction model was implemented using the river level and precipitation, and the performance was confirmed by comparing it with the LSTM and GRU models, which are often used for time series prediction. In addition, by checking the performance difference according to the size of the input data, it was possible to find the points to be supplemented, and it was confirmed that better performance than LSTM and GRU could be obtained. Through this, it is thought that it can be utilized as an initial study for flood prediction.

Transfer Function Model Forecasting of Sea Surface Temperature at Yeosu in Korean Coastal Waters (전이함수모형에 의한 여수연안 표면수온 예측)

  • Seong, Ki-Tack;Choi, Yang-Ho;Koo, Jun-Ho;Lee, Mi-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.526-534
    • /
    • 2014
  • In this study, single-input transfer function model is applied to forecast monthly mean sea surface temperature(SST) in 2010 at Yeosu in Korean coastal waters. As input series, monthly mean air temperature series for ten years(2000-2009) at Yeosu in Korea is used, and Monthly mean SST at Yeosu station in Korean coastal waters is used as output series(the same period of input). To build transfer function model, first, input time series is prewhitened, and then cross-correlation functions between prewhitened input and output series are determined. The cross-correlation functions have just two significant values at time lag at 0 and 1. The lag between input and output series, the order of denominator and the order of numerator of transfer function, (b, r, s) are identified as (0, 1, 0). The selected transfer function model shows that there does not exist the lag between monthly mean air temperature and monthly mean SST, and that transfer function has a first-order autoregressive component for monthly mean SST, and that noise model was identified as $ARIMA(1,0,1)(2,0,0)_{12}$. The forecasted values by the selected transfer function model are generally $0.3-1.3^{\circ}C$ higher than actual SST in 2010 and have 6.4 % mean absolute percentage error(MAPE). The error is 2 % lower than MAPE by ARIMA model. This implies that transfer function model could be more available than ARIMA model in terms of forecasting performance of SST.

A Novel Framework Based on CNN-LSTM Neural Network for Prediction of Missing Values in Electricity Consumption Time-Series Datasets

  • Hussain, Syed Nazir;Aziz, Azlan Abd;Hossen, Md. Jakir;Aziz, Nor Azlina Ab;Murthy, G. Ramana;Mustakim, Fajaruddin Bin
    • Journal of Information Processing Systems
    • /
    • v.18 no.1
    • /
    • pp.115-129
    • /
    • 2022
  • Adopting Internet of Things (IoT)-based technologies in smart homes helps users analyze home appliances electricity consumption for better overall cost monitoring. The IoT application like smart home system (SHS) could suffer from large missing values gaps due to several factors such as security attacks, sensor faults, or connection errors. In this paper, a novel framework has been proposed to predict large gaps of missing values from the SHS home appliances electricity consumption time-series datasets. The framework follows a series of steps to detect, predict and reconstruct the input time-series datasets of missing values. A hybrid convolutional neural network-long short term memory (CNN-LSTM) neural network used to forecast large missing values gaps. A comparative experiment has been conducted to evaluate the performance of hybrid CNN-LSTM with its single variant CNN and LSTM in forecasting missing values. The experimental results indicate a performance superiority of the CNN-LSTM model over the single CNN and LSTM neural networks.