• Title/Summary/Keyword: Time-series MODIS NDVI data

Search Result 25, Processing Time 0.036 seconds

Mapping and estimating forest carbon absorption using time-series MODIS imagery in South Korea (시계열 MODIS 영상자료를 이용한 산림의 연간 탄소 흡수량 지도 작성)

  • Cha, Su-Young;Pi, Ung-Hwan;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.517-525
    • /
    • 2013
  • Time-series data of Normal Difference Vegetation Index (NDVI) obtained by the Moderate-resolution Imaging Spectroradiometer(MODIS) satellite imagery gives a waveform that reveals the characteristics of the phenology. The waveform can be decomposed into harmonics of various periods by the Fourier transformation. The resulting $n^{th}$ harmonics represent the amount of NDVI change in a period of a year divided by n. The values of each harmonics or their relative relation have been used to classify the vegetation species and to build a vegetation map. Here, we propose a method to estimate the annual amount of carbon absorbed on the forest from the $1^{st}$ harmonic NDVI value. The $1^{st}$ harmonic value represents the amount of growth of the leaves. By the allometric equation of trees, the growth of leaves can be considered to be proportional to the total amount of carbon absorption. We compared the $1^{st}$ harmonic NDVI values of the 6220 sample points with the reference data of the carbon absorption obtained by the field survey in the forest of South Korea. The $1^{st}$ harmonic values were roughly proportional to the amount of carbon absorption irrespective of the species and ages of the vegetation. The resulting proportionality constant between the carbon absorption and the $1^{st}$ harmonic value was 236 tCO2/5.29ha/year. The total amount of carbon dioxide absorption in the forest of South Korea over the last ten years has been estimated to be about 56 million ton, and this coincides with the previous reports obtained by other methods. Considering that the amount of the carbon absorption becomes a kind of currency like carbon credit, our method is very useful due to its generality.

Detecting Phenology Using MODIS Vegetation Indices and Forest Type Map in South Korea (MODIS 식생지수와 임상도를 활용한 산림 식물계절 분석)

  • Lee, Bora;Kim, Eunsook;Lee, Jisun;Chung, Jae-Min;Lim, Jong-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.267-282
    • /
    • 2018
  • Despite the continuous development of phenology detection studies using satellite imagery, verification through comparison with the field observed data is insufficient. Especially, in the case of Korean forests patching in various forms, it is difficult to estimate the start of season (SOS) by using only satellite images due to resolution difference. To improve the accuracy of vegetation phenology estimation, this study reconstructed the large scaled forest type map (1:5,000) with MODIS pixel resolution and produced time series vegetation phenology curves from Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) derived from MODIS images. Based on the field observed data, extraction methods for the vegetation indices and SOS for Korean forests were compared and evaluated. We also analyzed the correlation between the composition ratio of forest types in each pixel and phenology extraction from the vegetation indices. When we compared NDVI and EVI with the field observed SOS data from the Korea National Arboretum, EVI was more accurate for Korean forests, and the first derivative was most suitable for extracting SOS in the phenology curve from the vegetation index. When the eight pixels neighboring the pixels of 7 broadleaved trees with field SOS data (center pixel) were compared to field SOS, the forest types of the best pixels with the highest correlation with the field data were deciduous forest by 67.9%, coniferous forest by 14.3%, and mixed forest by 7.7%, and the mean coefficient of determination ($R^2$) was 0.64. The average national SOS extracted from MODIS EVI were DOY 112.9 in 2014 at the earliest and DOY 129.1 in 2010 at the latest, which is about 0.16 days faster since 2003. In future research, it is necessary to expand the analysis of deciduous and mixed forests' SOS into the extraction of coniferous forest's SOS in order to understand the various climate and geomorphic factors. As such, comprehensive study should be carried out considering the diversity of forest ecosystems in Korea.

Early Production of Large-area Crop Classification Map using Time-series Vegetation Index and Past Crop Cultivation Patterns - A Case Study in Iowa State, USA - (시계열 식생지수와 과거 작물 재배 패턴을 이용한 대규모 작물 분류도의 조기 제작 - 미국 아이오와 주 사례연구 -)

  • Kim, Yeseul;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Yoo, Hee Young
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.493-503
    • /
    • 2014
  • A hierarchical classification scheme, which can reduce the spectral ambiguity and also reflect crop cultivation patterns from past land-cover maps, is presented for the purpose of the early production of crop classification maps in large-scale crop areas. Specifically, the effects of mixed pixels are minimized not only by applying a hierarchical classification approach based on different spectral characteristics from crop growth cycles, but also by considering temporal contextual information derived from past crop cultivation patterns. The applicability of the presented classification scheme was evaluated by a case study of Iowa State in USA with time-series MODIS 250 m Normalized Difference Vegetation Index(NDVI) data sets and past Cropland Data Layers(CDLs). Corn and soybean, which are major crop types in the study area and also display spectral similarity, could be properly classified by applying different classification stages and accounting for past crop cultivation patterns. The classification result by the presented scheme showed increases of minimum 7.68%p and maximum 20.96%p in overall accuracy, compared with one based on purely spectral information. In addition, the combination of temporal contextual information during classification was less affected by the number of NDVI data sets and the best overall accuracy of 86.63% was achieved. Thus, it is expected that this classification scheme can be effectively used for the early production of large-area crop classification maps in major feed-grain importing countries.

Evaluation of the DCT-PLS Method for Spatial Gap Filling of Gridded Data (격자자료 결측복원을 위한 DCT-PLS 기법의 활용성 평가)

  • Youn, Youjeong;Kim, Seoyeon;Jeong, Yemin;Cho, Subin;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1407-1419
    • /
    • 2020
  • Long time-series gridded data is crucial for the analyses of Earth environmental changes. Climate reanalysis and satellite images are now used as global-scale periodical and quantitative information for the atmosphere and land surface. This paper examines the feasibility of DCT-PLS (penalized least square regression based on discrete cosine transform) for the spatial gap filling of gridded data through the experiments for multiple variables. Because gap-free data is required for an objective comparison of original with gap-filled data, we used LDAPS (Local Data Assimilation and Prediction System) daily data and MODIS (Moderate Resolution Imaging Spectroradiometer) monthly products. In the experiments for relative humidity, wind speed, LST (land surface temperature), and NDVI (normalized difference vegetation index), we made sure that randomly generated gaps were retrieved very similar to the original data. The correlation coefficients were over 0.95 for the four variables. Because the DCT-PLS method does not require ancillary data and can refer to both spatial and temporal information with a fast computation, it can be applied to operative systems for satellite data processing.

Analysis of the MODIS-Based Vegetation Phenology Using the HANTS Algorithm (HANTS 알고리즘을 이용한 MODIS 영상기반의 식물계절 분석)

  • Choi, Chul-Hyun;Jung, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.20-38
    • /
    • 2014
  • Vegetation phenology is the most important indicator of ecosystem response to climate change. Therefore it is necessary to continuously monitor forest phenology. This paper analyzes the phenological characteristics of forests in South Korea using the MODIS vegetation index with error from clouds or other sources removed using the HANTS algorithm. After using the HANTS algorithm to reduce the noise of the satellite-based vegetation index data, we were able to confirm that phenological transition dates varied strongly with altitudinal gradients. The dates of the start of the growing season, end of the growing season and the length of the growing season were estimated to vary by +0.71day/100m, -1.33day/100m and -2.04day/100m in needleleaf forests, +1.50day/100m, -1.54day/100m and -3.04day/100m in broadleaf forests, +1.39day/100m, -2.04day/100m and -3.43day/100m in mixed forests. We found a linear pattern of variation in response to altitudinal gradients that was related to air temperature. We also found that broadleaf forests are more sensitive to temperature changes compared to needleleaf forests.