• 제목/요약/키워드: Time-of-flight mass spectrometry

Search Result 316, Processing Time 0.032 seconds

Putative multiple reaction monitoring strategy for the comparative pharmacokinetics of postoral administration Renshen-Yuanzhi compatibility through liquid chromatography-tandem mass spectrometry

  • Sun, Yufei;Feng, Guifang;Zheng, Yan;Liu, Shu;Zhang, Yan;Pi, Zifeng;Song, Fengrui;Liu, Zhiqiang
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.105-114
    • /
    • 2020
  • Background: Exploring the pharmacokinetic (PK) changes of various active components of single herbs and their combinations is necessary to elucidate the compatibility mechanism. However, the lack of chemical standards and low concentrations of multiple active ingredients in the biological matrix restrict PK studies. Methods: A putative multiple reaction monitoring strategy based on liquid chromatography coupled with mass spectrometry (LC-MS) was developed to extend the PK scopes of quantification without resorting to the use of chemical standards. First, the compounds studied, including components with available reference standard (ARS) and components lacking reference standard (LRS), were preclassified to several groups according to their chemical structures. Herb decoctions were then subjected to ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry analysis with appropriate collision energy (CE) in MS2 mode. Finally, multiple reaction monitoring transitions transformed from MS2 of ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry were used for ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry to obtain the mass responses of LRS components. LRS components quantification was further performed by developing an assistive group-dependent semiquantitative method. Results: The developed method was exemplified by the comparative PK process of single herbs Radix Ginseng (RG), Radix Polygala (RP), and their combinations (RG-RP). Significant changes in PK parameters were observed before and after combination. Conclusion: Results indicated that Traditional Chinese Medicine combinations can produce synergistic effects and diminish possible toxic effects, thereby reflecting the advantages of compatibility. The proposed strategy can solve the quantitative problem of LRS and extend the scopes of PK studies.

Novel analysis procedure for red ginseng polysaccharides by matrix-assisted laser desorption/ionization time-of-flight/time-offlight mass spectrometry

  • Jin, Ye Rin;Oh, Myung Jin;Yuk, Heung Joo;An, Hyun Joo;Kim, Dong Seon
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.539-545
    • /
    • 2021
  • Background: Red ginseng polysaccharides (RGPs) have been acknowledged for their outstanding immunomodulation and anti-tumor activities. However, their studies are still limited by the complexity of their structural features, the absence of purification and enrichment methods, and the rarity of the analytical instruments that apply to the analysis of such macromolecules. Thus, this study is an attempt to establish a new mass spectrometry (MS)-based analysis procedure for RGPs. Methods: Saponin pre-excluded powder of RG (RG-SPEP, 10 mg) was treated with 200 µL of distilled water and centrifuged for 5 h at 1000 rpm and 85 ℃. Ethanol-based precipitation and centrifugation were applied to obtain RGPs from the heated extracts. Further, endo-carbohydrase treatments were performed to produce specific saccharide fragments. Solid-phase extraction (SPE) processes were implemented to purify and enrich the enzyme-treated RGPs, while matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) MS was employed for the partial structural analysis of the obtained RGPs. Results: Utilizing cellulase, porous graphitized carbon (PGC), hydrophilic interaction chromatography (HILIC), and MALDI-TOF/TOF MS, the neutral and acidic RGPs were qualitatively analyzed. Hexn and Hexn-18 (cellulose analogs) were determined to be novel neutral RGPs. Additionally, the [Unknown + Hexn] species were also determined as new acidic RGPs. Furthermore, HexAn (H) was determined as another form of the acidic RGPs. Conclusion: Compared to the previous methods of analysis, these unprecedented applications of HILIC-SPE and MALDI-TOF/TOF MS to analyze RGPs proved to be fairly effective for fractionating and detecting neutral and acidic components. This new procedure exhibits great potential as a specific tool for searching and determining various polysaccharides in many herbal medicines.

Application of Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry (Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry의 활용)

  • Pil Seung KWON
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.244-252
    • /
    • 2023
  • The timeliness and accuracy of test results are crucial factors for clinicians to decide and promptly administer effective and targeted antimicrobial therapy, especially in life-threatening infections or when vital organs and functions, such as sight, are at risk. Further research is needed to refine and optimize matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based assays to obtain accurate and reliable results in the shortest time possible. MALDI-TOF MS-based bacterial identification focuses primarily on techniques for isolating and purifying pathogens from clinical samples, the expansion of spectral libraries, and the upgrading of software. As technology advances, many MALDI-based microbial identification databases and systems have been licensed and put into clinical use. Nevertheless, it is still necessary to develop MALDI-TOF MS-based antimicrobial-resistance analysis for comprehensive clinical microbiology characterization. The important applications of MALDI-TOF MS in clinical research include specific application categories, common analytes, main methods, limitations, and solutions. In order to utilize clinical microbiology laboratories, it is essential to secure expertise through education and training of clinical laboratory scientists, and database construction and experience must be maximized. In the future, MALDI-TOF mass spectrometry is expected to be applied in various fields through the use of more powerful databases.

Tentative identification of 20(S)-protopanaxadiol metabolites in human plasma and urine using ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass spectrometry

  • Ling, Jin;Yu, Yingjia;Long, Jiakun;Li, Yan;Jiang, Jiebing;Wang, Liping;Xu, Changjiang;Duan, Gengli
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.539-549
    • /
    • 2019
  • Background: 20(S)-Protopanaxadiol (PPD), the aglycone part of 20(S)-protopanaxadiol ginsenosides, possesses antidepressant activity among many other pharmacological activities. It is currently undergoing clinical trial in China as an antidepressant. Methods: In this study, an ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass tandem mass spectrometry method was established to identify the metabolites of PPD in human plasma and urine following oral administration in phase IIa clinical trial. Results: A total of 40 metabolites in human plasma and urine were identified using this method. Four metabolites identified were isolated from rat feces, and two of them were analyzed by NMR to elucidate the exact structures. The structures of isolated compounds were confirmed as (20S,24S)-epoxydammarane-12,23,25-triol-3-one and (20S,24S)-epoxydammarane-3,12,23,25-tetrol. Both compounds were found as metabolites in human for the first time. Upon comparing our findings with the findings of the in vitro study of PPD metabolism in human liver microsomes and human hepatocytes, metabolites with m/z 475.3783 and phase II metabolites were not found in our study whereas metabolites with m/z 505.3530, 523.3641, and 525.3788 were exclusively detected in our experiments. Conclusion: The metabolites identified using ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass spectrometry in our study were mostly hydroxylated metabolites. This indicated that PPD was metabolized in human body mainly through phase I hepatic metabolism. The main metabolites are in 20,24-oxide form with multiple hydroxylation sites. Finally, the metabolic pathways of PPD in vivo (human) were proposed based on structural analysis.

Surface Mass Imaging Technique for Nano-Surface Analysis

  • Lee, Tae Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.113-114
    • /
    • 2013
  • Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging is a powerful technique for producing chemical images of small biomolecules (ex. metabolites, lipids, peptides) "as received" because of its high molecular specificity, high surface sensitivity, and submicron spatial resolution. In addition, matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) imaging is an essential technique for producing chemical images of large biomolecules (ex. genes and proteins). For this talk, we will show that label-free mass imaging technique can be a platform technology for biomedical studies such as early detection/diagnostics, accurate histologic diagnosis, prediction of clinical outcome, stem cell therapy, biosensors, nanomedicine and drug screening [1-7].

  • PDF

Application of Malononitrile Derivatization Method for Structural Glycomics Study in Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry

  • Ahn, Yeong-Hee;Yoo, Jong-Shin
    • Journal of Photoscience
    • /
    • v.8 no.2
    • /
    • pp.83-86
    • /
    • 2001
  • Structural analyses of oligosaccharide-malononitrile derivatives were conducted by matrix-assisted laser desorption/ionization post-source decay (MALDI-PSD) analysis in positive ion mode. The malononitrile derivatives of oligosaccharides, which were developed for highly sensitive detection of multi-component oligosaccharides by negative ion electrospray ionization mass spectrometry (ESI MS), were detected by positive-ion MALDI with the detection limit of 2 pmol level from the crude derivatization sample. The used matrix affected drastically the analytical results of oligosaccharide-malononitrile derivative by matrix-assisted laser desoprtion/ionization mass spectrometry (MALDI MS). The malononitrile derivatization of oligosaccharide also affect the patterns of MALDI-PSD spectra and give much more structural information than the free oligosaccharide.

  • PDF

Analysis of Organic Compounds in Ambient PM2.5 over Seoul using Thermal Desorption-comprehensive Two Dimensional Gas Chromatography-time of Flight Mass Spectrometry (TD-GCxGC-TOFMS) (Thermal Desorption-comprehensive Two Dimensional Gas Chromatography-time of Flight Mass Spectrometry (TD-GCxGC-TOFMS)을 이용한 서울 대기 중 PM2.5 유기성분 분석)

  • Lee, Ji-Yi;Lane, Douglas A.;Huh, Jong-Bae;Yi, Sung-Muk;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.5
    • /
    • pp.420-431
    • /
    • 2009
  • Characteristics and advantages of the thermal desorption-comprehensive two dimensional gas chromatography-time of flight mass spectrometry (TD-GCxGC-TOFMS) were discussed and the organic compound's analysis result was shown for the ambient $PM_{2.5}$ sample collected in Seoul, Korea. Over 10,000 individual organic compounds were separated from about $70{\mu}g$ of aerosols in a single procedure with no sample pre-treatment. Among them, around 300 compounds were identified and classified based on the mass fragmentation patterns and GCxGC retention times. Several aliphatic compounds groups such as alkanes, alkenes, cycloalkanes, alkanoic acids, and alkan-2-ones were identified as well as 72 PAH compounds including alkyl substituted compounds and 8 hopanes. In Seoul aerosol, numerous oxidized aromatic compounds including major components of secondary organic aerosols were observed. The inventory of organic compounds in $PM_{2.5}$ of Seoul, Korea suggested that organic aerosol were constituted by the compounds of primary source emission as well as the formation of secondary organic aerosols.

Quantitative Surface Analysis using Laser Ionisation Mass Spectrometry

  • King, Bruce V.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.167-167
    • /
    • 1999
  • In laser ionisation mass spectrometry (LIMS) atoms and molecules which are desorbed from solid surfaces are ionised by an intense laser beam. The photoions which are created are then mass analysed in a time-of-flight mass spectromenter. In best situations, 10% of the ejected particles can be detected, giving the technique^g , pp b sensitivity. Since the ionisation and desorption steps are separated, matrix effects are minimised, in contrast to competitor techniques like SIMS, so quantitation is improved. The talk will illustrate the application of LIMS to basic studies in sputtering in Sr, Cu3Au(100) and Ni3Al(100) as well as ultratrace analysis of Zr in Si.

  • PDF

Ultrasensitive Trace Determination of Pb by Two-Color Resonance Ionization Mass Spectrometry

  • 송규석;차형기;이종민;박종윤;허영덕
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.578-582
    • /
    • 1995
  • The resonance ionization mass spectrometry (RIMS) system with angular reflectron type time-of-flight mass spectrometer (AREF-TOFMS) has been developed and characterized. The system is applied for the ultratrace determination of Pb element. The 2-color 3-photon laser ionization scheme is adopted for the study and the mass resolution of the system is determined as T/ΔT=1680. The calibration curve for Pb is obtained in the range of 100 ppb to 0.01 ppb by using standard solutions. The minimal amount of detection for the present RIMS system is determined as less than 100 femtograms (10-13 gram).