• 제목/요약/키워드: Time-frequency processing

검색결과 1,063건 처리시간 0.028초

Advanced signal processing for enhanced damage detection with piezoelectric wafer active sensors

  • Yu, Lingyu;Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • 제1권2호
    • /
    • pp.185-215
    • /
    • 2005
  • Advanced signal processing techniques have been long introduced and widely used in structural health monitoring (SHM) and nondestructive evaluation (NDE). In our research, we applied several signal processing approaches for our embedded ultrasonic structural radar (EUSR) system to obtain improved damage detection results. The EUSR algorithm was developed to detect defects within a large area of a thin-plate specimen using a piezoelectric wafer active sensor (PWAS) array. In the EUSR, the discrete wavelet transform (DWT) was first applied for signal de-noising. Secondly, after constructing the EUSR data, the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used for the time-frequency analysis. Then the results were compared thereafter. We eventually chose continuous wavelet transform to filter out from the original signal the component with the excitation signal's frequency. Third, cross correlation method and Hilbert transform were applied to A-scan signals to extract the time of flight (TOF) of the wave packets from the crack. Finally, the Hilbert transform was again applied to the EUSR data to extract the envelopes for final inspection result visualization. The EUSR system was implemented in LabVIEW. Several laboratory experiments have been conducted and have verified that, with the advanced signal processing approaches, the EUSR has enhanced damage detection ability.

Motion JPEG2000을 위한 실시간 비디오 압축 프로세서의 하드웨어 구조 및 설계 (Hardware Architecture and its Design of Real-Time Video Compression Processor for Motion JPEG2000)

  • 서영호;김동욱
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권1호
    • /
    • pp.1-9
    • /
    • 2004
  • In this paper, we proposed a hardware(H/W) structure which can compress and recontruct the input image in real time operation and implemented it into a FPGA platform using VHDL(VHSIC Hardware Description Language). All the image processing element to process both compression and reconstruction in a FPGA were considered each of them was mapped into a H/W with the efficient structure for FPGA. We used the DWT(discrete wavelet transform) which transforms the data from spatial domain to the frequency domain, because use considered the motion JPEG2000 as the application. The implemented H/W is separated to both the data path part and the control part. The data path part consisted of the image processing blocks and the data processing blocks. The image processing blocks consisted of the DWT Kernel for the filtering by DWT, Quantizer/Huffman Encoder, Inverse Adder/Buffer for adding the low frequency coefficient to the high frequency one in the inverse DWT operation, and Huffman Decoder. Also there existed the interface blocks for communicating with the external application environments and the timing blocks for buffering between the internal blocks. The global operations of the designed H/W are the image compression and the reconstruction, and it is operated by the unit or a field synchronized with the A/D converter. The implemented H/W used the 54%(12943) LAB(Logic Array Block) and 9%(28352) ESB(Embedded System Block) in the APEX20KC EP20K600CB652-7 FPGA chip of ALTERA, and stably operated in the 70MHz clock frequency. So we verified the real time operation. that is. processing 60 fields/sec(30 frames/sec).

부너맨 주파수 추정 알고리듬을 이용한 풍력발전기 가변 전력신호 처리에 관한 연구 (The Time Variant Power Signal Processing of Wind Generator using Buneman Frequency Estimator Algorithm)

  • 최상열;이종주
    • 조명전기설비학회논문지
    • /
    • 제24권12호
    • /
    • pp.138-146
    • /
    • 2010
  • On wind turbine generators, the speed and volume of the wind affect the turbine angle speed which finally determines the output level of the electric power. However it is very difficult to forecast correctly the future power output and quality based on previous fixed sampling methods. This paper proposes a variable sampling method based on Buneman frequency estimation algorithm to reflect the variations of the frequency and amplitude on wind power outputs. The proposed method is also verified through the performance test by comparing with the results from previous fixed sampling methods and the real measurement data.

FMCW 레이더의 거리 및 속도 오차 향상을 위한 신호처리부 하드웨어 구조 제안 (Architecture of Signal Processing Unit to Improve Range and Velocity Error for Automotive FMCW Radar)

  • 현유진;이종훈
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.54-61
    • /
    • 2010
  • In this paper, we design the signal processing unit to effectively support the proposed algorithm for an automotive Frequency Modulation Continuous Wave(FMCW) radar. In the proposed method, we can obtain the distance and velocity with improved error depending on each range(long, middle, and short) of the target. Since a high computational capacity is required to obtain more accurate distance and velocity for target in near range, the proposed signal processing unit employs the time de-interleaving and the frequency interpolation method to overcome the limitation. Moreover, for real-time signal processing, the parallel architecture is used to extract simultaneously the distance and velocity in each range.

고주파해동기 개발에 관한 연구 (A Study on Development of the High Frequency Thawing Machine)

  • 정석봉;김태훈;손태영;유응성;신지영;정재연;황진우;양지영
    • 한국산업융합학회 논문집
    • /
    • 제21권6호
    • /
    • pp.301-307
    • /
    • 2018
  • This paper deals with the development of the high frequency thawing machine. The fishery products caught over the world are kept frozen to maintain freshness. These fishery products require thawing before they are sold to customers as food. However, the thawing process can cause freshness reduction, drip coming out, quality deterioration, discharging polluted water, as well as a lot of space and time. The high frequency thawing machine developed to solve this problem has a narrow space, a short thawing time and a small drip. The developed high frequency thawing machine can be used in many fields such as fish processing plant, livestock processing plant. This paper describes the design of the high frequency thawing machine by developing the high frequency generator, development of the controller, and the design of mechanism, and shows the superiority of the high frequency thawing machine by the performance evaluation.

개선된 혼성영역 교차상관법에 의한 G.723.1의 피치검색시간 단축에 관한 연구 (A Study on the Pitch Search Time Reduction of G.723.1 Vocoder by Improved Hybrid Domain Cross-correlation)

  • 조왕래;최성영;배명진
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2324-2328
    • /
    • 2010
  • In this paper we proposed a new algorithm that can reduce the open-loop pitch estimation time of G.723.1. The time domain cross-correlation method is simple but has long processing time by recursive multiplication. For reduction of processing time, we use the method that compute the cross-correlation by multiplying the Fourier value of speech by it's complex conjugate. Also, we can reduce the processing time by omitting the bit-reversing of FFT and IFFT for time-frequency domain transform. As a result, the processing time of improved hybrid domain cross-correlation algorithm is reduced by 67.37% of conventional time domain cross-correlation.

Time-frequency domain characteristics of intact and cracked red sandstone based on acoustic emission waveforms

  • Yong Niu;Jinguo Wang;Yunjin Hu;Gang Wang;Bolong Liu
    • Geomechanics and Engineering
    • /
    • 제34권1호
    • /
    • pp.1-15
    • /
    • 2023
  • This study conducts uniaxial compression tests on intact and single crack-contained rocks to investigate the time-frequency domain characteristics of acoustic emission (AE) signals monitored during the deformation failure process. A processing approach, short-time Fourier transform (STFT), is performed to obtain the evolution characteristics of time-frequency domain of AE signals. The AE signal modes at different deformation stages of rocks are different. Five modes of AE signal are observed during the cracking process of rocks. The evolution characteristics of time-frequency domain of AE signals processed by STFT can be utilized to evaluate the damage process of rocks. The difference of time-frequency domain characteristics between intact and cracked rocks is comparatively analyzed. The distribution characteristics of frequency changing from a single band-shaped cluster to multiple band-shaped clusters can be regarded as an early warning information of damage and failure of rocks. Meanwhile, the attenuation of frequency enables the exploration of rock failure trends.

Frequency-Code Domain Contention in Multi-antenna Multicarrier Wireless Networks

  • Lv, Shaohe;Zhang, Yiwei;Li, Wen;Lu, Yong;Dong, Xuan;Wang, Xiaodong;Zhou, Xingming
    • Journal of Communications and Networks
    • /
    • 제18권2호
    • /
    • pp.218-226
    • /
    • 2016
  • Coordination among users is an inevitable but time-consuming operation in wireless networks. It severely limit the system performance when the data rate is high. We present FC-MAC, a novel MAC protocol that can complete a contention within one contention slot over a joint frequency-code domain. When a node takes part in the contention, it generates randomly a contention vector (CV), which is a binary sequence of length equal to the number of available orthogonal frequency division multiplexing (OFDM) subcarriers. In FC-MAC, different user is assigned with a distinct signature (i.e., PN sequence). A node sends the signature at specific subcarriers and uses the sequence of the ON/OFF states of all subcarriers to indicate the chosen CV. Meanwhile, every node uses the redundant antennas to detect the CVs of other nodes. The node with the minimum CV becomes the winner. The experimental results show that, the collision probability of FC-MAC is as low as 0.05% when the network has 100 nodes. In comparison with IEEE 802.11, contention time is reduced by 50-80% and the throughput gain is up to 200%.

개선된 Anisotropic Gaussian 필터를 이용한 지문 영상 향상 (Fingerprint Image Enhancement using a Modified Anisotropic Gaussian Filter)

  • 조희덕;김상희;박원우
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.293-296
    • /
    • 2003
  • The enhancement of fingerprint image is necessary to improve the performance of fingerprint recognition. The enhancement of fingerprint image with Gabor Filter(GF) is widely used. However GF has the weakness such as long processing time and the sensitivity to ridge frequency. To overcome these weaknesses, we propose a Modified Anisotropic Gaussian Filter(MAGF) which is modified from Anisotropic Filter proposed by S. Greenburg's(SAF). This proposed MAGF can reduce the calculation time of ridge frequency and improve the weakness of sensitivity to ridge frequency. We also explained that MAGF is better than others mathematically and experimentally.

  • PDF

웨이브렛의 주파수-시간 평면 해석에 관한 연구 (A Study on Frequency-Time Plane Analysis of Wavelet)

  • 배상범;류지구;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.451-454
    • /
    • 2005
  • 현재, 신호를 해석하기 위한 많은 방법들이 제시되고 있으며, 대표적인 방법으로는 퓨리에 변환과 웨이브렛 변환이 있다. 이러한 방법들에서, 퓨리에 변환은 모든 주파수 범위에 대해 cosine과 sine 파형의 조합으로써 신호를 표현하지만, 신호 내에서 특정 주파수 성분이 발생한 시간정보를 제공하지 않으며, 분석 신호의 전체적인 특징만을 나타낸다. 따라서 이러한 한계를 극복하기 위해, 다중해상도 해석이 가능한 웨이브렛 변환이 음성과 영상처리, 컴퓨터 비전 등의 광범위한 분야에서 응용되고 있다. 그리고 웨이브렛 변환은 스케일 변수에 따라 변화하는 윈도우를 사용하여 시간-주파수 국부성을 나타낸다. 본 논문에서는 cosine과 sine 형태의 웨이브렛을 사용하여, 퓨리에 변환의 새로운 접근법을 제시하였으며, 주파수-시간 평면의 유한한 지점에서 신호의 특징을 분석하였다.

  • PDF