• Title/Summary/Keyword: Time-frequency filtering technique

Search Result 51, Processing Time 0.025 seconds

An Adaptive Filtering Technique for Vibration Reduction of a Rotational LOS Control System and Frequency Noise Reduction of an Imaging System (적응형 필터링 기법을 이용한 회전형 시선제어시스템의 진동 저감 및 영상 주파수노이즈 저감 기법)

  • Kim, Byeong-Hak;Kim, Min-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1014-1022
    • /
    • 2014
  • In mechatronic systems using electric signals to drive control systems, driving signals including the frequency band of the unwanted signals, such as resonant frequencies and noise frequencies, can affect the accuracy of the controlled system and can cause serious damage to the system due to the resonance phenomenon of the mechatronic system. An LOS (Line of Sight) control unit is used to automatically rotate the gimbal system with a video imaging system generally mounted on modern aerial vehicles. However, it still suffers from natural frequency variation problems due to variations of operational temperature. To prevent degradation in performance, this paper proposes an adaptive filtering technique based on real-time noise analysis and adaptive notch-filtering for LOS control systems, and verifies how our proposed method maintains the LOS stabilization performance. Additionally, this filtering technique can be applied to the image noise filtering of the video imaging system. It is designed to reduce image noises generated by switching circuits or power sources. The details of design procedures of the proposed filtering technique and the experiments for the performance verification are described in this paper.

High-order, closely-spaced modal parameter estimation using wavelet analysis

  • Le, Thai-Hoa;Caracoglia, Luca
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.423-442
    • /
    • 2015
  • This study examines the wavelet transform for output-only system identification of ambient excited engineering structures with emphasis on its utilization for modal parameter estimation of high-order and closely-spaced modes. Sophisticated time-frequency resolution analysis has been carried out by employing the modified complex Morlet wavelet function for better adaption and flexibility of the time-frequency resolution to extract two closely-spaced frequencies. Furthermore, bandwidth refinement techniques such as a bandwidth resolution adaptation, a broadband filtering technique and a narrowband filtering one have been proposed in the study for the special treatments of high-order and closely-spaced modal parameter estimation. Ambient responses of a 5-story steel frame building have been used in the numerical example, using the proposed bandwidth refinement techniques, for estimating the modal parameters of the high-order and closely-spaced modes. The first five natural frequencies and damping ratios of the structure have been estimated; furthermore, the comparison among the various proposed bandwidth refinement techniques has also been examined.

1D Wavelet Filtering for Groundroll Suppression in Land Seismic-Reflection Data

  • Sa, Jin-Hyeon;Lee, Jae-Eun;Kim, Sung-Soo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.513-518
    • /
    • 2017
  • Groundroll is a coherent noise showing dispersive behavior in land seismic-reflection records and its rejection has been a stubborn problem in data processing because they severely degrade the continuities and resolution of reflection signals. Conventional processing schemes of attenuating noises are the kind of frequency filtering (i.e., bandpass and f-k) that uses the Fourier transform (FT) along the entire trace in the time domain. To suppress them in this study, 1D wavelet filtering (WT) that can control time-varying frequency properties is tested and performed in the land-based synthetic and field seismic data. The results are compared to the ones from conventional filtering techniques in terms of continuities and resolution of reflection events. This filtering technique enhanced the reflection events by effectively eliminating the dispersive groundroll and random noises with control of time-scale function on wavelet domain.

Detection and Tracking of Time Varying Power System Frequencies and Harmonics using Subband Adaptive Filtering (적응 부밴드 필터링을 이용한 전력계통 시변 주파수와 고조파 검출 및 추적)

  • Sohn, Sang-Wook;Choi, Hun;Bae, Hyeon-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.679-687
    • /
    • 2009
  • In this paper, a subband filtering and adaptive prediction technique for analyzing harmonics in power systems is presented. In this method, the filter banks are designed to decompose odd and even order harmonics separately. The adaptive prediction has been employed reduce the transient and white noise effect in time varying harmonics detecting and tracking. The frequencies and amplitudes of the decomposed harmonics are estimated by recursive algorithm. To demonstrate the performances of the developed technique, computer simulations to the signal with the time-varying frequency and THD are carried out.

High-rate Single-Frequency Precise Point Positioning (SF-PPP) in the detection of structural displacements and ground motions

  • Mert Bezcioglu;Cemal Ozer Yigit;Ahmet Anil Dindar;Ahmed El-Mowafy;Kan Wang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.589-599
    • /
    • 2024
  • This study presents the usability of the high-rate single-frequency Precise Point Positioning (SF-PPP) technique based on 20 Hz Global Positioning Systems (GPS)-only observations in detecting dynamic motions. SF-PPP solutions were obtained from post-mission and real-time GNSS corrections. These include the International GNSS Service (IGS)-Final, IGS real-time (RT), real-time MADOCA (Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis), and real-time products from the Australian/New Zealand satellite-based augmentation systems (SBAS, known as SouthPAN). SF-PPP results were compared with LVDT (Linear Variable Differential Transformer) sensor and single-frequency relative positioning (SF-RP) solutions. The findings show that the SF-PPP technique successfully detects the harmonic motions, and the real-time products-based PPP solutions were as accurate as the final post-mission products. In the frequency domain, all GNSS-based methods evaluated in this contribution correctly detect the dominant frequency of short-term harmonic oscillations, while the differences in the amplitude values corresponding to the peak frequency do not exceed 1.1 mm. However, evaluations in the time domain show that SF-PPP needs high-pass filtering to detect accurate displacement since SF-PPP solutions include trends and low-frequency fluctuations, mainly due to atmospheric effects. Findings obtained in the time domain indicate that final, real-time, and MADOCA-based PPP results capture short-term dynamic behaviors with an accuracy ranging from 3.4 mm to 8.5 mm, and SBAS-based PPP solutions have several times higher RMSE values compared to other methods. However, after high-pass filtering, the accuracies obtained from PPP methods decreased to a few mm. The outcomes demonstrate the potential of the high-rate SF-PPP method to reliably monitor structural and earthquake-induced ground motions and vibration frequencies of structures.

Supervised learning and frequency domain averaging-based adaptive channel estimation scheme for filterbank multicarrier with offset quadrature amplitude modulation

  • Singh, Vibhutesh Kumar;Upadhyay, Nidhi;Flanagan, Mark;Cardiff, Barry
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.966-977
    • /
    • 2021
  • Filterbank multicarrier with offset quadrature amplitude modulation (FBMC-OQAM) is an attractive alternative to the orthogonal frequency division multiplexing (OFDM) modulation technique. In comparison with OFDM, the FBMC-OQAM signal has better spectral confinement and higher spectral efficiency and tolerance to synchronization errors, primarily due to per-subcarrier filtering using a frequency-time localized prototype filter. However, the filtering process introduces intrinsic interference among the symbols and complicates channel estimation (CE). An efficient way to improve the CE in FBMC-OQAM is using a technique known as windowed frequency domain averaging (FDA); however, it requires a priori knowledge of the window length parameter which is set based on the channel's frequency selectivity (FS). As the channel's FS is not fixed and not a priori known, we propose a k-nearest neighbor-based machine learning algorithm to classify the FS and decide on the FDA's window length. A comparative theoretical analysis of the mean-squared error (MSE) is performed to prove the proposed CE scheme's effectiveness, validated through extensive simulations. The adaptive CE scheme is shown to yield a reduction in CE-MSE and improved bit error rates compared with the popular preamble-based CE schemes for FBMC-OQAM, without a priori knowledge of channel's frequency selectivity.

Real-Tim Sound Field Effect Implementation Using Block Filtering and QFT (Block Filtering과 QFT를 이용한 실시간 음장 효과구현)

  • Sohn Sung-Yong;Seo Jeongil;Hahn Minsoo
    • MALSORI
    • /
    • no.51
    • /
    • pp.85-98
    • /
    • 2004
  • It is almost impossible to generate the sound field effect in real time with the time-domain linear convolution because of its large multiplication operation requirement. To solve this, three methods are introduced to reduce the number of multiplication operations in this paper. Firstly, the time-domain linear convolution is replaced with the frequency-domain circular convolution. In other words, the linear convolution result can be derived from that of the circular convolution. This technique reduces the number of multiplication operations remarkably, Secondly, a subframe concept is introduced, i.e., one original frame is divided into several subframes. Then the FFT is executed for each subframe and, as a result, the number of multiplication operations can be reduced. Finally, the QFT is used in stead of the FFT. By combining all the above three methods into our final the SFE generation algorithm, the number of computations are reduced sufficiently and the real-time SFE generation becomes possible with a general PC.

  • PDF

Implementation of Real-time Stereo Frequency Demodulator Using RTL-SDR (RTL-SDR을 이용한 스테레오 주파수 변조 방송의 실시간 수신기 구현)

  • Kim, Young-Ju
    • Journal of Broadcast Engineering
    • /
    • v.24 no.3
    • /
    • pp.485-494
    • /
    • 2019
  • A software-driven real-time frequency de-modulator is implemented with the aid of universal-serial-bus (USB) type software defined radio dongle. An analog stereo frequency modulation (FM) broadcast signal is down-converted to the basedband analog signal then converted to digital bit streams in the USB dongle. Computer software such as Matlab, Python, and GNU Radio manipulates the incoming bit streams with the technique of digital signal processing. Low pass filtering, band pass filtering, decimation, frequency discriminator, double sideband amplitude demodulation, phase locked loop, and deemphasis function blocks are implemented using such computer languages. Especially, GNU Radion is employed to realize the real-time demodulator.

Development of Two Dimensional Filter for the Reconstructive Image Processing

  • Lee, Hwang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1979.08a
    • /
    • pp.164-165
    • /
    • 1979
  • Two dimensional kernels which reconstruct the tomographic image from the blurred one formed by simple back-projection are investigated and their performances are compared. These kernels are derived from tile point spread function of the tomographic system and have the form of a ramp filter modified by several window functions to suppress ringing in the reconstruction. Computer simulation using a computer generated phantom image data with different correction functions(kernels) has been carried out. In this simulation, filtering in frequency domain by 2-D FFT technique or in space domain by 2-D direct convolution is considered. It is found that the-computation time required for real space convolution technique is much larger than that of Fourier 2-D filtering technique in the pratical situation.

  • PDF

A Constrained Optimum Match-filtering Method for Cross-equalization of Time-lapse Seismic Datasets (시간경과 탄성파 자료의 교차균등화를 위한 제약적 최적 맞춤필터링 방법)

  • Choi, Yun-Gyeong;Ji, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.23-32
    • /
    • 2012
  • The comparison between time-lapse seismic datasets is the most popular method in the reservoir monitoring. The method of extracting the changes only due to the change in the reservoir is the essential technique in the comparison of time-lapse seismic datasets. In the paper, the conventional cross-equalization approaches and an enhanced optimized approach have been tested and compared each other. As conventional approaches, the bandwidth equalization and phase rotation methods have been tested in frequency, time and mixed domains, respectively and their results were compared each other. In order to overcome the limit of the conventional approaches, which loses high frequency components, a new constrained optimum filtering method was proposed and experimented. The new constrained filtering method has shown the improvement in broadening the bandwidth of the components of reservoir changes by acquiring optimized match filter.