• Title/Summary/Keyword: Time-efficiency

Search Result 12,008, Processing Time 0.042 seconds

Implementation of Git's Commit Message Classification Model Using GPT-Linked Source Change Data

  • Ji-Hoon Choi;Jae-Woong Kim;Seong-Hyun Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.123-132
    • /
    • 2023
  • Git's commit messages manage the history of source changes during project progress or operation. By utilizing this historical data, project risks and project status can be identified, thereby reducing costs and improving time efficiency. A lot of research related to this is in progress, and among these research areas, there is research that classifies commit messages as a type of software maintenance. Among published studies, the maximum classification accuracy is reported to be 95%. In this paper, we began research with the purpose of utilizing solutions using the commit classification model, and conducted research to remove the limitation that the model with the highest accuracy among existing studies can only be applied to programs written in the JAVA language. To this end, we designed and implemented an additional step to standardize source change data into natural language using GPT. This text explains the process of extracting commit messages and source change data from Git, standardizing the source change data with GPT, and the learning process using the DistilBERT model. As a result of verification, an accuracy of 91% was measured. The proposed model was implemented and verified to ensure accuracy and to be able to classify without being dependent on a specific program. In the future, we plan to study a classification model using Bard and a management tool model helpful to the project using the proposed classification model.

Phase Segmentation of PVA Fiber-Reinforced Cementitious Composites Using U-net Deep Learning Approach (U-net 딥러닝 기법을 활용한 PVA 섬유 보강 시멘트 복합체의 섬유 분리)

  • Jeewoo Suh;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.323-330
    • /
    • 2023
  • The development of an analysis model that reflects the microstructure characteristics of polyvinyl alcohol (PVA) fiber-reinforced cementitious composites, which have a highly complex microstructure, enables synergy between efficient material design and real experiments. PVA fiber orientations are an important factor that influences the mechanical behavior of PVA fiber-reinforced cementitious composites. Owing to the difficulty in distinguishing the gray level value obtained from micro-CT images of PVA fibers from adjacent phases, fiber segmentation is time-consuming work. In this study, a micro-CT test with a voxel size of 0.65 ㎛3 was performed to investigate the three-dimensional distribution of fibers. To segment the fibers and generate training data, histogram, morphology, and gradient-based phase-segmentation methods were used. A U-net model was proposed to segment fibers from micro-CT images of PVA fiber-reinforced cementitious composites. Data augmentation was applied to increase the accuracy of the training, using a total of 1024 images as training data. The performance of the model was evaluated using accuracy, precision, recall, and F1 score. The trained model achieved a high fiber segmentation performance and efficiency, and the approach can be applied to other specimens as well.

Analysis of Cloud Seeding Case Experiment in Connection with Republic of Korea Air Force Transport and KMA/NIMS Atmospheric Research Aircrafts (공군수송기와 기상항공기를 연계한 인공강우 사례실험 분석)

  • Yun-Kyu Lim;Ki-Ho Chang;Yonghun Ro;Jung Mo Ku;Sanghee Chae;Hae-Jung Koo;Min-Hoo Kim;Dong-Oh Park;Woonseon Jung;Kwangjae Lee;Sun Hee Kim;Joo Wan Cha;Yong Hee Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.12
    • /
    • pp.899-914
    • /
    • 2023
  • Various seeding materials for cloud seeding are being used, and sodium chloride powder is one of them, which is commonly used. This study analyzed the experimental results of multi-aircraft cloud seeding in connection with Republic of Korea Air Force (CN235) and KMA/NIMS(Korea Meteorological Administration/National Institute of Meteorological Sciences) Atmospheric Research Aircraft. Powdered sodium chloride was used in CN235 for the first time in South Korea. The analysis of the cloud particle size distributions and radar reflectivity before and after cloud seeding showed that the growth efficiency of powdery seeding material in the cloud is slightly higher than that of hygroscopic flare composition in the distribution of number concentrations by cloud aerosol particle diameter (10 ~ 1000 ㎛). Considering the radar reflectivity, precipitation, and numerical model simulation, the enhanced precipitation due to cloud seeding was calculated to be a maximum of 3.7 mm for 6 hours. The simulated seeding effect area was about 3,695 km2, which corresponds to 13,634,550 tons of water. In the precipitation component analysis, as a direct verification method, the ion equivalent concentrations (Na+, Cl-, Ca2+) of the seeding material at the Bukgangneung site were found to be about 1000 times higher than those of other non-affected areas between about 1 and 2 hours after seeding. This study suggests the possibility of continuous multi-aircraft cloud seeding experiments to accumulate and increase the amount of precipitation enhancement.

A Study on the Operation for Dynamic Bus-Only Hard Shoulder Running on Expressway (고속도로 동적 갓길버스전용차로제 운영방안에 관한 연구)

  • Eon-kyo Shin;Ju-hyun Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.108-126
    • /
    • 2023
  • In this paper, the dynamic hard shoulder running for bus only (HSRFBO) was presented to solve the traffic congestion by increase the capacity in chronic congested sections of highways, and a simulation was performed to evaluate the comparison with the current hard shoulder running for all vehicles(HSRFAV) and median bus only lane and HSR(MBOLHSR). According to the evaluation results, it was evaluated to be more advantageous in terms of traffic flow and safety than the current HSRFAV. In addition, the speed of passing buses is slightly reduced compared to the MBOHSR, but the speed of entering and exiting buses is increased and the speed of buses and cars is greatly improved. Therefore It was analyzed that the efficiency of transport personnel was also improved. In particular, it is expected that traffic flow will be stabilized as the difference in speed between passenger cars and buses will be greatly reduced, and violations of exclusive bus lanes by passenger cars will be greatly reduced. In addition, the operation time of HSR is greatly reduced, so that the original function of the shoulder lane can be maintained as much as possible. As a result, it was analyzed that the risk of accidents was significantly reduced when operating HSRFBO compared to when operating MBOHSR, and cross-conflicts with high accident severity did not occur.

Dimensional Stability and Mechanical Properties of Citric Acid Impregnated Samama Wood (Anthocephalus macrophyllus (Roxb) Havil) at High Curing Temperatures

  • Sarah AUGUSTINA;Sari Delviana MARBUN;SUDARMANTO;NARTO;Deazy Rachmi TRISATYA;Eko Budi SANTOSO;Dhimas PRAMADANI;Nanda Nur AFNI;Tushliha Ayyuni FARIHA;Gabriel Wiwinda L. TOBING;Wasrin SYAFI'I;Tekat Dwi CAHYONO;Eka NOVRIYANTI;Muhammad BULA;Adik BAHANAWAN;Prabu Satria SEJATI;Nam Hun KIM;Wahyu DWIANTO;Philippe GERARDIN
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.431-446
    • /
    • 2023
  • Samama wood (Anthocephalus macrophyllus (Roxb) Havil) is a fast-growing and lesser-utilized wood species that has inferior properties; therefore, its quality needs to be improved. This research aimed to determine the effect of citric acid impregnation at high curing temperatures on the dimensional stability and mechanical properties of wood. Citric acid solution with 10% concentration (w/w) was impregnated into wood samples by vacuum-pressure method (-0.5 cmHg, 30 min; 0.7 MPa, 3 h), followed by curing process at 140℃, 160℃, and 180℃ of temperature for 1 h. In comparison, the other wood samples were heat treated at the same temperatures and time. The results showed that the increase in curing and heat temperatures for both treatments were directly proportional to the dimensional stability, but inversely proportional to the mechanical properties. Citric acid impregnated had higher density, dimensional stability, and mechanical properties, except for modulus of rupture, than that of heat treatment. The optimum temperature is suggested at 160℃ in both treatments.

Study on Risk Priority for TBM Tunnel Collapse based on Bayes Theorem through Case Study (사례분석을 통한 베이즈 정리 기반 TBM 터널 붕괴 리스크 우선순위 도출 연구)

  • Kwon, Kibeom;Kang, Minkyu;Hwang, Byeonghyun;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.785-791
    • /
    • 2023
  • Risk management is essential for preventing accidents arising from uncertainties in TBM tunnel projects, especially concerning managing the risk of TBM tunnel collapse, which can cause extensive damage from the tunnel face to the ground surface. In addition, prioritizing risks is necessary to allocate resources efficiently within time and cost constraints. Therefore, this study aimed to establish a TBM risk database through case studies of TBM accidents and determine a risk priority for TBM tunnel collapse using the Bayes theorem. The database consisted of 87 cases, dealing with three accidents and five geological sources. Applying the Bayes theorem to the database, it was found that fault zones and weak ground significantly increased the probability of tunnel collapse, while the other sources showed low correlations with collapse. Therefore, the risk priority for TBM tunnel collapse, considering geological sources, is as follows: 1) Fault zone, 2) Weak ground, 3) Mixed ground, 4) High in-situ stress, and 5) Expansive ground. In practice, the derived risk priority can serve as a valuable reference for risk management, enhancing the safety and efficiency of TBM construction. It provides guidance for developing appropriate countermeasure plans and allocating resources effectively to mitigate the risk of TBM tunnel collapse.

Improvement of Multiple-sensor based Frost Observation System (MFOS v2) (다중센서 기반 서리관측 시스템의 개선: MFOS v2)

  • Suhyun Kim;Seung-Jae Lee;Kyu Rang Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.226-235
    • /
    • 2023
  • This study aimed to supplement the shortcomings of the Multiple-sensor-based Frost Observation System (MFOS). The developed frost observation system is an improvement of the existing system. Based on the leaf wetness sensor (LWS), it not only detects frost but also functions to predict surface temperature, which is a major factor in frost occurrence. With the existing observation system, 1) it is difficult to observe ice (frost) formation on the surface when capturing an image of the LWS with an RGB camera because the surface of the sensor reflects most visible light, 2) images captured using the RGB camera before and after sunrise are dark, and 3) the thermal infrared camera only shows the relative high and low temperature. To identify the ice (frost) generated on the surface of the LWS, a LWS that was painted black and three sheets of glass at the same height to be used as an auxiliary tool to check the occurrence of ice (frost) were installed. For RGB camera shooting before and after sunrise, synchronous LED lighting was installed so the power turns on/off according to the camera shooting time. The existing thermal infrared camera, which could only assess the relative temperature (high or low), was improved to extract the temperature value per pixel, and a comparison with the surface temperature sensor installed by the National Institute of Meteorological Sciences (NIMS) was performed to verify its accuracy. As a result of installing and operating the MFOS v2, which reflects these improvements, the accuracy and efficiency of automatic frost observation were demonstrated to be improved, and the usefulness of the data as input data for the frost prediction model was enhanced.

Energy Balancing Distribution Cluster With Hierarchical Routing In Sensor Networks (계층적 라우팅 경로를 제공하는 에너지 균등분포 클러스터 센서 네트워크)

  • Mary Wu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.166-171
    • /
    • 2023
  • Efficient energy management is a very important factor in sensor networks with limited resources, and cluster techniques have been studied a lot in this respect. However, a problem may occur in which energy use of the cluster header is concentrated, and when the cluster header is not evenly distributed over the entire area but concentrated in a specific area, the transmission distance of the cluster members may be large or very uneven. The transmission distance can be directly related to the problem of energy consumption. Since the energy of a specific node is quickly exhausted, the lifetime of the sensor network is shortened, and the efficiency of the entire sensor network is reduced. Thus, balanced energy consumption of sensor nodes is a very important research task. In this study, factors for balanced energy consumption by cluster headers and sensor nodes are analyzed, and a balancing distribution clustering method in which cluster headers are balanced distributed throughout the sensor network is proposed. The proposed cluster method uses multi-hop routing to reduce energy consumption of sensor nodes due to long-distance transmission. Existing multi-hop cluster studies sets up a multi-hop cluster path through a two-step process of cluster setup and routing path setup, whereas the proposed method establishes a hierarchical cluster routing path in the process of selecting cluster headers to minimize the overhead of control messages.

LCL Cargo Loading Algorithm Considering Cargo Characteristics and Load Space (화물의 특성 및 적재 공간을 고려한 LCL 화물 적재 알고리즘)

  • Daesan Park;Sangmin Jo;Dongyun Park;Yongjae Lee;Dohee Kim;Hyerim Bae
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.375-393
    • /
    • 2023
  • The demand for Less than Container Load (LCL) has been on the rise due to the growing need for various small-scale production items and the expansion of the e-commerce market. Consequently, more companies in the International Freight Forwarder are now handling LCL. Given the variety in cargo sizes and the diverse interests of stakeholders, there's a growing need for a container loading algorithm that optimizes space efficiency. However, due to the nature of the current situation in which a cargo loading plan is established in advance and delivered to the Container Freight Station (CFS), there is a limitation that variables that can be identified at industrial sites cannot be reflected in the loading plan. Therefore, this study proposes a container loading methodology that makes it easy to modify the loading plan at industrial sites. By allowing the characteristics of cargo and the status of the container to be considered, the requirements of the industrial site were reflected, and the three-dimensional space was manipulated into a two-dimensional planar layer to establish a loading plan to reduce time complexity. Through the methodology presented in this study, it is possible to increase the consistency of the quality of the container loading methodology and contribute to the automation of the loading plan.

Survey of coastal topography using images from a single UAV (단일 UAV를 이용한 해안 지형 측량)

  • Noh, Hyoseob;Kim, Byunguk;Lee, Minjae;Park, Yong Sung;Bang, Ki Young;Yoo, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1027-1036
    • /
    • 2023
  • Coastal topographic information is crucial in coastal management, but point measurment based approeaches, which are labor intensive, are generally applied to land and underwater, separately. This study introduces an efficient method enabling land and undetwater surveys using an unmanned aerial vehicle (UAV). This method involves applying two different algorithms to measure the topography on land and water depth, respectively, using UAV imagery and merge them to reconstruct whole coastal digital elevation model. Acquisition of the landside terrain is achieved using the Structure-from-Motion Multi-View Stereo technique with spatial scan imagery. Independently, underwater bathymetry is retrieved by employing a depth inversion technique with a drone-acquired wave field video. After merging the two digital elevation models into a local coordinate, interpolation is performed for areas where terrain measurement is not feasible, ultimately obtaining a continuous nearshore terrain. We applied the proposed survey technique to Jangsa Beach, South Korea, and verified that detailed terrain characteristics, such as berm, can be measured. The proposed UAV-based survey method has significant efficiency in terms of time, cost, and safety compared to existing methods.