• 제목/요약/키워드: Time-domain Analysis

검색결과 2,326건 처리시간 0.029초

Selecting and scaling ground motion time histories according to Eurocode 8 and ASCE 7-05

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • 제5권2호
    • /
    • pp.129-142
    • /
    • 2013
  • Linear and nonlinear time history analyses have been becoming more common in seismic analysis and design of structures with advances in computer technology and earthquake engineering. One of the most important issues for such analyses is the selection of appropriate acceleration time histories and matching these histories to a code design acceleration spectrum. In literature, there are three sources of acceleration time histories: artificial records, synthetic records obtained from seismological models and accelerograms recorded in real earthquakes. Because of the increase of the number of strong ground motion database, using and scaling real earthquake records for seismic analysis has been becoming one of the most popular research issues in earthquake engineering. In general, two methods are used for scaling actual earthquake records: scaling in time domain and frequency domain. The objective of this study is twofold: the first is to discuss and summarize basic methodologies and criteria for selecting and scaling ground motion time histories. The second is to analyze scaling results of time domain method according to ASCE 7-05 and Eurocode 8 (1998-1:2004) criteria. Differences between time domain method and frequency domain method are mentioned briefly. The time domain scaling procedure is utilized to scale the available real records obtained from near fault motions and far fault motions to match the proposed elastic design acceleration spectrum given in the Eurocode 8. Why the time domain method is preferred in this study is stated. The best fitted ground motion time histories are selected and these histories are analyzed according to Eurocode 8 (1998-1:2004) and ASCE 7-05 criteria. Also, characteristics of both near fault ground motions and far fault ground motions are presented by the help of figures. Hence, we can compare the effects of near fault ground motions on structures with far fault ground motions' effects.

Time-domain analyses of the layered soil by the modified scaled boundary finite element method

  • Lu, Shan;Liu, Jun;Lin, Gao;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.1055-1086
    • /
    • 2015
  • The dynamic response of two-dimensional unbounded domain on the rigid bedrock in the time domain is numerically obtained. It is realized by the modified scaled boundary finite element method (SBFEM) in which the original scaling center is replaced by a scaling line. The formulation bases on expanding dynamic stiffness by using the continued fraction approach. The solution converges rapidly over the whole time range along with the order of the continued fraction increases. In addition, the method is suitable for large scale systems. The numerical method is employed which is a combination of the time domain SBFEM for far field and the finite element method used for near field. By using the continued fraction solution and introducing auxiliary variables, the equation of motion of unbounded domain is built. Applying the spectral shifting technique, the virtual modes of motion equation are eliminated. Standard procedure in structural dynamic is directly applicable for time domain problem. Since the coefficient matrixes of equation are banded and symmetric, the equation can be solved efficiently by using the direct time domain integration method. Numerical examples demonstrate the increased robustness, accuracy and superiority of the proposed method. The suitability of proposed method for time domain simulations of complex systems is also demonstrated.

An iterative approach for time-domain flutter analysis of bridges based on restart technique

  • Zhang, Wen-ming;Qian, Kai-rui;Xie, Lian;Ge, Yao-jun
    • Wind and Structures
    • /
    • 제28권3호
    • /
    • pp.171-180
    • /
    • 2019
  • This paper presents a restart iterative approach for time-domain flutter analysis of long-span bridges using the commercial FE package ANSYS. This approach utilizes the recursive formats of impulse-response-function expressions for bridge's aeroelastic forces. Nonlinear dynamic equilibrium equations are iteratively solved by using the restart technique in ANSYS, which enable the equilibrium state of system to get back to last moment absolutely during iterations. The condition for the onset of flutter instability becomes that, at a certain wind velocity, the amplitude of vibration is invariant with time. A long-span suspension bridge was taken as a numerical example to verify the applicability and accuracy of the proposed method by comparing calculated results with wind tunnel tests. The proposed method enables the bridge designers and engineering practitioners to carry out time-domain flutter analysis of bridges in commercial FE package ANSYS.

Two-dimensional energy transmitting boundary in the time domain

  • Nakamura, Naohiro
    • Earthquakes and Structures
    • /
    • 제3권2호
    • /
    • pp.97-115
    • /
    • 2012
  • The energy-transmitting boundary, which is used in the well-known finite element method (FEM) program FLUSH, is quite efficient for the earthquake response analysis of buildings considering soil-structure interaction. However, it is applicable only in the frequency domain. The author proposed methods for transforming frequency dependent impedance into the time domain, and studied the time domain transform of the boundary. In this paper, first, the estimation methods for both the halfspace condition under the bottom of the soil model and the pseudo three-dimensional effect were studied with the time domain transmitting boundary. Next, response behavior when using the boundary was studied in detail using a practical soil and building model. The response accuracy was compared with those using viscous boundary, and the boundary that considers the excavation force. Through these studies, the accuracy and efficiency of the proposed time domain transmitting boundary were confirmed.

ECG신호의 잡음 제거를 위한 디지탈 필터의 시간 영역 해석 (Time Domain Analysis of Digital Filters for Noise Cancelling in ECG Signals)

  • 남현도;안동준;이철희
    • 대한의용생체공학회:의공학회지
    • /
    • 제14권2호
    • /
    • pp.137-145
    • /
    • 1993
  • Time domain analysis as well as frequency domain analysis of signal conditioning filters is very useful for practical applications. Time domain analysis of digital filters for noise cancelling in ECG signals is presented. Several band pass and band reject filters are designed for the analysis. Computer simulations are performed to compare the distortions of the Butterworth type filters and linear phase optimal FIR filters which are widely used for ECG signal processing. Band reject filters are applied to power line interference cancelling in ECG signals.

  • PDF

매 시간단계의 등가정하중을 다중하중조건으로 이용한 준정적 구조최적화 방법 (Quasi-Static Structural Optimization Technique Using Equivalent Static Loads Calculated at Every Time Step as a Multiple Loading Condition)

  • 최우석;박경진
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2568-2580
    • /
    • 2000
  • This paper presents a quasi-static optimization technique for elastic structures under dynamic loads. An equivalent static load (ESL) set is defined as a static load set which generates the same displacement field as that from a dynamic load at a certain time. Multiple ESL sets calculated at every time step are employed to represent the various states of the structure under the dynamic load. They can cover every critical state that might happen at an arbitrary time. Continuous characteristics of dynamic load are simulated by multiple discontinuous ones of static loads. The calculated sets of ESLs are applied as a multiple loading condition in the optimization process. A design cycle is defined as a circulated process between an analysis domain and a design domain. Design cycles are repeated until a design converges. The analysis domain gives a loading condition necessary for the design domain. The design domain gives a new updated design to be verified by the analysis domain in the next design cycle. This iterative process is quite similar to that of the multidisciplinary optimization technique. Even though the global convergence cannot be guaranteed, the proposed technique makes it possible to optimize the structures under dynamic loads. It has also applicability, flexibility, and reliability.

Stripmap-mode SAR에서의 영상복원 알고리즘의 성능분석 (Performance Analysis of the reconstruction Algorithms in the Stripmap-mode SAR)

  • 박현복;김형주;최정희
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2000년도 종합학술발표회 논문집 Vol.10 No.1
    • /
    • pp.29-33
    • /
    • 2000
  • Stripmap SAR 시스템에서 레이더는 Slant range-domain에서 고정된 Strip상에 Data acquisition period 동안 계속해서 같은 Broadside 방사 패턴을 유지하며, Range domain에서 고정돈 Strip내의 지형의 지도를 제공하는 SAR 영상 시스템이다. Stripmap SAR를 위한 고전적인 영상 복원을 Synthetic aperture (slow-time) domain에서 Deramping 또는 Chirp deconvolution을 이용하는 Fresnel approximaptio에 의존하였다. 또 다른 Stripmap SAR 영상화의 접근방법으로 SAR wavefront reconstruction이론과 레이더 방사형태에 대한 spherical wave Fourier decomposition을 통하여 slow-time domain에서의 SAR 신호의 분석에 기본을 두고 있다. 본 논문에서는 컴퓨터 모의 실험을 통해 생성된 Stripmap SAR 데이터를 이용하여 Fresnel approximation 기법과 Wavefront Reconstruction 기법을 비교 분석한다.

  • PDF

A step-by-step approach in the time-domain BEM formulation for the scalar wave equation

  • Carrer, J.A.M.;Mansur, W.J.
    • Structural Engineering and Mechanics
    • /
    • 제27권6호
    • /
    • pp.683-696
    • /
    • 2007
  • This article is concerned with the presentation of a time-domain BEM approach applied to the solution of the scalar wave equation for 2D problems. The basic idea is quite simple: the basic variables of the problem at time $t_n$ (potential and flux) are computed with the results related to the potential and to its time derivative at time $t_{n-1}$ playing the role of "initial conditions". This time-marching scheme needs the computation of the potential and its time derivative at all boundary nodes and internal points, as well as the entire discretization of the domain. The convolution integrals of the standard time-domain BEM formulation, however, are not computed; the matrices assembled, only at the initial time interval, are those related to the potential, flux and to the potential time derivative. Two examples are presented and discussed at the end of the article, in order to verify the accuracy and potentialities of the proposed formulation.

발전기 제어장치와 TCSC를 포함하는 이산 전력시스템의 고유치 감도해석 (Eigenvalue Sensitivity Analysis of Discrete Power Systems Including Generator Controllers and TCSC)

  • 김덕영
    • 조명전기설비학회논문지
    • /
    • 제24권12호
    • /
    • pp.193-200
    • /
    • 2010
  • In this paper, the eigenvalue sensitivity analysis is calculated in the power system which is including both generator controllers such as Exciter, PSS and thyristor controlled FACTS devices in transmission lines such as TCSC. Exciter and PSS are continuously operating controllers but TCSC has a switching device which operates non-continuously. To analyze both continuous and non-continuous operating equipments, the RCF method one of the numerical analysis method in discrete time domain is applied using discrete models of the power system. Also the eigenvalue sensitivity calculation algorithm using state transition equations in discrete time domain is devised and applied to a sampled system. As a result of simulation, the eigenvalue sensitivity coefficients calculated using discrete system models in discrete time domain are changed periodically and showed different values compared to those of continuous system model in time domain by the effect of periodic switching operations of TCSC.

LQ 조절기의 안정도 영역에 관한 연구 : 시간 영역에서의 해석 (A Study on the Stability Magin of the LQ Regulator : Time Domain Analysis)

  • 김상우;권욱현;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.125-129
    • /
    • 1987
  • The stability margin of the LQ regulator is investigated in the time domain. it is shown that the same guaranteed gain margin as that of the frequency domain analysis can be obtained with simple assumptions for the continuous time systems. It is also shown that the allowable modelling error bound can be expressed in terms of system matrices and Riccati equation solution. Guaranteed qain. margin and the allowable modelling error bound for the discrete time systems are also obtained by the similar procedures. In this case, through the some examples, the gain margin is shown to be less conservative than the frequency domain analysis result.

  • PDF