• Title/Summary/Keyword: Time-dependent performance

Search Result 740, Processing Time 0.024 seconds

Time Dependent Degradation of Cell in Dye-Sensitized Solar Cell (염료 감응형 태양전지에서 시간의 경과에 따른 셀의 특성 저하 연구)

  • Seo, Hyun Woo;Kim, Ki Soo;Beak, Hyun Duk;Kim, Dong Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.421-427
    • /
    • 2013
  • We report on the time dependent degradation of cell in dye-sensitized solar cells (DSSC). The photovoltaic performance of DSSC over a period of time was investigated in liquid electrolyte based on triiodide/iodide during six days. It was found that the short circuit current density ($j_{sc}$) of the cell dropped from 9.9 to $7mA/cm^2$ while efficiency (${\eta}$) of the cell decreased from 4.4 to 3.3%. The parameters corresponding to fundamental electronic and ionic processes in a working DSSC are determined from the electrochemical impedance spectrascopy (EIS) at open-circuit potential ($V_{oc}$). EIS study of the DSSC in the this work showed that the electron life time ${\tau}_r$ and chemical capacitance $C_{\mu}$ decreased significantly after six days. It was correlated the $j_{sc}$ and efficiency decreased after six days.

Effects of polymer support fluid on shaft resistance of offshore bored piles

  • Chungsik Yoo;Chun-Won Shin
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.519-528
    • /
    • 2023
  • In this paper, we present the results of an experimental study on the effect of polymer support fluid on shaft resistance of offshore bored piles. A series of pullout tests were performed on bored piles installed under various boundary conditions considering different types of grounds and support fluids, and a range of support fluid exposure times. Contrary to previous studies concerning onshore bored piles, a time dependent effect of polymer fluid on shaft resistance was observed in all ground types. The adverse effect of polymer support fluid on the shaft resistance, however, was considerably less than bentonite support fluid for a given exposure time. No significant reduction in shaft resistance was evident when limiting the exposure time of the polymer support fluid to the side wall of the borehole within 2-3 hours. The degree to which the polymer fluid affects shaft resistance seemed to vary with the ground type. A proper consideration should be given to the time dependent effect of polymer fluid on shaft resistance of bored piles installed in offshore construction environment to limit its adverse effect on the pile performance. The practical implications of the findings are discussed.

Circadian rhythms in subjective activation, mood, and performance efficiency (주관적 각성정도, 기분, 수행능력의 일중변화)

  • Yoon, In-Young
    • Sleep Medicine and Psychophysiology
    • /
    • v.5 no.1
    • /
    • pp.12-17
    • /
    • 1998
  • Circadian rhythms in subjective alertness, mood, and performance can be classified as psychological rhythm, compared with physiological rhythm such as body temperature and hormonal change. While in normal condition entrained by 24hr zeitgeber, subjective alertness would reach its maximum value around midday, subjective alertness would parallel body temperature rhythm with its peak at evening in non-entrained, free-running state. With desynchronization technique, subjective alertness rhythm is thought to be controlled by both temperature and sleep-wake rhythm oscillator. Circadian performance rhythms depend on the kind of task tested. It shows parallelism with body temperature rhythm when subjects are tested with simple, repetitive task. But when tested with tasks requiring complex verbal reasoning or immediate memory, subjects would perform them best at early morning, with performance decreasing as time of day advances. The desynchronization technique shows that circadian performance rhythm of simple, repetitive task is dependent on temperature oscillator but circadian performance rhythm of complex verbal reasoning is influenced by both temperature and sleep-wake rhythm oscillator or another independent oscillator. It would be worthwhile to compare psychological rhythm with hormonal change such as cortisol and melatonin. And more simple and time-saving method than desynchronization technique may facilitate the study of the mechanism underlying psychological rhythm.

  • PDF

Broadcasting and Caching Schemes for Location-dependent Queries in Urban Areas (도심환경에서 위치의존 질의를 위한 방송과 캐싱 기법)

  • Jung Il-dong;Yu Young-ho;Lee Jong-hwan;Kim Kyongsok
    • Journal of KIISE:Databases
    • /
    • v.32 no.1
    • /
    • pp.56-70
    • /
    • 2005
  • The results of location-dependent queries(LDQ) generally depend on the current locations of query issuers. Many mechanisms, e.g. broadcast scheme, hoarding, or racking policy, have been developed to improve the system peformance and provide better services, which are specialized for LDQs. Considering geographical adjacency of data and characteristics oi target area, caching policy and broadcast scheme affect the overall performance in LDQ. For this reason, we propose both the caching policy and broadcast scheme, which these features are reflected in. Based on the adjacency of data in LDQ, our broadcast scheme use Hilbert curve to cluster data. Moreover, in order to develop the caching policy suitable for LDQ on urban area, we apply the moving distance of a MH(Mobile Host) to our caching policy We evaluate the performance of the caching policy measuring the workload of MHs and the correctness of LDQ results and the performance of the broadcast scheme measuring the average setup-time of MHs in our experiments. Finally, we expect that our caching policy Provides more correct answers when executing LDQ in focal cache and leads significant improvement of the performance of MHs. It also seems quite probable that our broadcast scheme leads improvement of battery life of the MH.

Performance Evaluation of VSDA Blind Equalization Algorithm for 16-QAM Signal (16-QAM 신호에 대한 VSDA 블라인드 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.85-91
    • /
    • 2014
  • This paper relates with the VSDA (Variable stepsize Square contour Decision directed Algorithm) adaptive equalization algorithm that is used for the minimization of the intersymbol interference due to the distortion which occurs in the time dispersive channel for the transmission of 16-QAM signal.. In the conventional SCA, it is possible to compensates the amplitude and phase in the received signal that are mixed with the intersymbol interference by the constellatin dependent constant by using the 2nd order statistics of the transmitted signal. But in the VSDA, it is possible to the increasing the equalization performance by adding the concept of distance adjusted approach for constellation matching and the cost function of decision directed. We compare the performance of VSDA and SCA algorithm by the computer simulation. For this, the equalizer output signal constellation, residual isi, maximum distortion and MSE were used in the performace index. As a result of computer simulation, the VSDA algorithm has better than the SCA in convergence speed, but it gives nearly same equalization performance in other index.

Mesh Stability Study for the Performance Assessment of a Deep Geological Repository Using APro

  • Hyun Ho Cho;Hong Jang;Dong Hyuk Lee;Jung-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.283-294
    • /
    • 2023
  • APro, developed in KAERI for the process-based total system performance assessment (TSPA) of deep geological disposal systems, performs finite element method (FEM)-based multiphysics analysis. In the FEM-based analysis, the mesh element quality influences the numerical solution accuracy, memory requirement, and computation time. Therefore, an appropriate mesh structure should be constructed before the mesh stability analysis to achieve an accurate and efficient process-based TSPA. A generic reference case of DECOVALEX-2023 Task F, which has been proposed for simulating stationary groundwater flow and time-dependent conservative transport of two tracers, was used in this study for mesh stability analysis. The relative differences in tracer concentration varying mesh structures were determined by comparing with the results for the finest mesh structure. For calculation efficiency, the memory requirements and computation time were compared. Based on the mesh stability analysis, an approach based on adaptive mesh refinement was developed to resolve the error in the early stage of the simulation time-period. It was observed that the relative difference in the tracer concentration significantly decreased with high calculation efficiency.

Investigation of decontamination characteristics of a serial multiple pool scrubber system for consequence mitigation of severe accidents

  • Hyeon Ho Byun;Man-Sung Yim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4585-4600
    • /
    • 2022
  • A pool scrubber is often used as a wet-type design to mitigate the consequence of a severe nuclear accident. While studies indicated higher decontamination performance of a deeper pool, utilizing a very tall pool can be problematic due to potential structural stability and water backflow issues. This study proposes, as an alternative to a single pool system, a pool scrubber system composed of serially connected multiple pools with lower heights. Since large fraction of aerosol removal takes place in the injection region, serially connected pool scrubber system is expected to enhance the overall decontamination capability of a pool scrubber system. To support the analysis of the proposed system's decontamination capability, a new computer model was developed in the study to describe the bubble size dependent effect on aerosol removal including the effect of pool residence time. The accuracy of the new model was examined against experimental data for its validation. The proposed scrubber system composed of serially connected multiple shorter pools is found to have much improved decontamination performance over the current single pool system design.

Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis

  • Avci, Muammer;Botelho, Rui M.;Christenson, Richard
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2020
  • This paper demonstrates a real-time hybrid substructuring (RTHS) shake table test to evaluate the seismic performance of a base isolated building. Since RTHS involves a feedback loop in the test implementation, the frequency dependent magnitude and inherent time delay of the actuator dynamics can introduce inaccuracy and instability. The paper presents a robust stability and performance analysis method for the RTHS test. The robust stability method involves casting the actuator dynamics as a multiplicative uncertainty and applying the small gain theorem to derive the sufficient conditions for robust stability and performance. The attractive feature of this robust stability and performance analysis method is that it accommodates linearized modeled or measured frequency response functions for both the physical substructure and actuator dynamics. Significant experimental research has been conducted on base isolators and dampers toward developing high fidelity numerical models. Shake table testing, where the building superstructure is tested while the isolation layer is numerically modeled, can allow for a range of isolation strategies to be examined for a single shake table experiment. Further, recent concerns in base isolation for long period, long duration earthquakes necessitate adding damping at the isolation layer, which can allow higher frequency energy to be transmitted into the superstructure and can result in damage to structural and nonstructural components that can be difficult to numerically model and accurately predict. As such, physical testing of the superstructure while numerically modeling the isolation layer may be desired. The RTHS approach has been previously proposed for base isolated buildings, however, to date it has not been conducted on a base isolated structure isolated at the ground level and where the isolation layer itself is numerically simulated. This configuration provides multiple challenges in the RTHS stability associated with higher physical substructure frequencies and a low numerical to physical mass ratio. This paper demonstrates a base isolated RTHS test and the robust stability and performance analysis necessary to ensure the stability and accuracy. The tests consist of a scaled idealized 4-story superstructure building model placed directly onto a shake table and the isolation layer simulated in MATLAB/Simulink using a dSpace real-time controller.

Real-time hybrid simulation of a multi-story wood shear wall with first-story experimental substructure incorporating a rate-dependent seismic energy dissipation device

  • Shao, Xiaoyun;van de Lindt, John;Bahmani, Pouria;Pang, Weichiang;Ziaei, Ershad;Symans, Michael;Tian, Jingjing;Dao, Thang
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1031-1054
    • /
    • 2014
  • Real-time hybrid simulation (RTHS) of a stacked wood shear wall retrofitted with a rate-dependent seismic energy dissipation device (viscous damper) was conducted at the newly constructed Structural Engineering Laboratory at the University of Alabama. This paper describes the implementation process of the RTHS focusing on the controller scheme development. An incremental approach was adopted starting from a controller for the conventional slow pseudodynamic hybrid simulation and evolving to the one applicable for RTHS. Both benchmark-scale and full-scale tests are discussed to provide a roadmap for future RTHS implementation at different laboratories and/or on different structural systems. The developed RTHS controller was applied to study the effect of a rate-dependent energy dissipation device on the seismic performance of a multi-story wood shear wall system. The test specimen, setup, program and results are presented with emphasis given to inter-story drift response. At 100% DBE the RTHS showed that the multi-story shear wall with the damper had 32% less inter-story drift and was noticeably less damaged than its un-damped specimen counterpart.

Interdependent Data Allocation a Scheme over Multiple Wireless Broadcast Channels (다중 무선 방송채널에서 상호 관련 데이타 할당 방법)

  • Park, Sung-Wook;Jung, Sung-Won
    • Journal of KIISE:Databases
    • /
    • v.36 no.1
    • /
    • pp.30-43
    • /
    • 2009
  • Broadcast in the wireless environment has drawn much attention because it is capable of sending data to clients regardless of the number of clients. Most previous researches have aimed at obtaining an independent data item in a minimum time. But, they have not been researched on simultaneously receiving dependent data items in a query. In addition, these papers have only researched allocation problem that have not been came out data items in a query in same time and different channels. The access probability of each data item based on query request probability have not been reflected. This paper proposes a new method of allocating data items and simultaneously minimizing average response time required in receiving all the dependent data items in a query. Our performance analysis shows that our proposed method gives better average response time over the existing methods.