• Title/Summary/Keyword: Time-dependent deformation

Search Result 207, Processing Time 0.025 seconds

Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.721-736
    • /
    • 2017
  • In this paper, free vibration characteristics of functionally graded (FG) nanobeams embedded on elastic medium are investigated based on third order shear deformation (Reddy) beam theory by presenting a Navier type solution for the first time. The material properties of FG nanobeam are assumed to vary gradually along the thickness and are estimated through the power-law and Mori-Tanaka models. A two parameters elastic foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived based on third order shear deformation beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared to some cases in the literature. The obtained results are presented for the vibration analysis of the FG nanobeams such as the influences of foundation parameters, gradient index, nonlocal parameter and slenderness ratio in detail.

Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory

  • Besseghier, Abderrahmane;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.601-614
    • /
    • 2017
  • In this work, free vibration analysis of size-dependent functionally graded (FG) nanoplates resting on two-parameter elastic foundation is investigated based on a novel nonlocal refined trigonometric shear deformation theory for the first time. This theory includes undetermined integral variables and contains only four unknowns, with is even less than the conventional first shear deformation theory (FSDT). Mori-Tanaka model is employed to describe gradually distribution of material properties along the plate thickness. Size-dependency of nanosize FG plate is captured via the nonlocal elasticity theory of Eringen. By implementing Hamilton's principle the equations of motion are obtained for a refined four-variable shear deformation plate theory and then solved analytically. To show the accuracy of the present theory, our research results in specific cases are compared with available results in the literature and a good agreement will be demonstrated. Finally, the influence of various parameters such as nonlocal parameter, power law indexes, elastic foundation parameters, aspect ratio, and the thickness ratio on the non-dimensional frequency of rectangular FG nanoscale plates are presented and discussed in detail.

Analysis of Time-Dependent Deformation of CFRP Considering the Anisotropy of Moisture Diffusion

  • Arao, Yoshihiko;Koyanagi, Jun;Hatta, Hiroshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.359-372
    • /
    • 2008
  • The moisture absorption behavior of carbon fiber-reinforced plastic (CFRP) and its effect on dimensional stability were examined. Moisture diffusivity in CFRP was determined by measuring a specimen's weight during the moisture absorption test. Three types of CFRP specimens were prepared: a unidirectionally reinforced laminate, a quasi-isotropic laminate and woven fabric. Each CFRP was processed into two geometries - a thin plate for determination of diffusivity and a rod with a square cross-section for the discussion of two-dimensional diffusion behavior. By solving Fick's law expanded to 3 dimensions, the diffusivities in the three orthogonal directions were obtained and analyzed in terms of the anisotropy of CFRP moisture diffusion. Coefficients of moisture expansion (CMEs) were also obtained from specimen deformation caused by moisture absorption. During moisture absorption, the specimen surfaces showed larger deformation near the edges due to the distribution of moisture contents. This deformation was reasonably predicted by the finite element analysis using experimentally determined diffusivities and CMEs. For unidirectional CFRP, the effect of the fiber alignment on CME was analyzed by micromechanical finite element analysis (FEA) and discussed.

Prediction of Cryogenic- and Room-Temperature Deformation Behavior of Rolled Titanium using Machine Learning (타이타늄 압연재의 기계학습 기반 극저온/상온 변형거동 예측)

  • S. Cheon;J. Yu;S.H. Lee;M.-S. Lee;T.-S. Jun;T. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.74-80
    • /
    • 2023
  • A deformation behavior of commercially pure titanium (CP-Ti) is highly dependent on material and processing parameters, such as deformation temperature, deformation direction, and strain rate. This study aims to predict the multivariable and nonlinear tensile behavior of CP-Ti using machine learning based on three algorithms: artificial neural network (ANN), light gradient boosting machine (LGBM), and long short-term memory (LSTM). The predictivity for tensile behaviors at the cryogenic temperature was lower than those in the room temperature due to the larger data scattering in the train dataset used in the machine learning. Although LGBM showed the lowest value of root mean squared error, it was not the best strategy owing to the overfitting and step-function morphology different from the actual data. LSTM performed the best as it effectively learned the continuous characteristics of a flow curve as well as it spent the reduced time for machine learning, even without sufficient database and hyperparameter tuning.

Long-term behavior of prestressed concrete beam with corrugated steel web under sustained load

  • Motlagh, Hamid Reza Ebrahimi;Rahai, Alireza
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.809-819
    • /
    • 2022
  • This paper proposes a method to predict the deflection of prestressed concrete (PC) beams with corrugated steel web (CSW) under constant load concerning time-dependent variation in concrete material. Over time, the top and bottom concrete slabs subjected to asymmetric compression experience shrinkage and creep deformations. Here, the classical Euler-Bernoulli beam theory assumption that the plane sections remain plane is not valid due to shear deformation of CSW. Therefore, this study presents a method based on the first-order shear deformation to find the long-term deflection of the composite beams under bending by considering time effects. Two experimental prestressed beams of this type were monitored under their self-weight over time, and the theoretical results were compared with those data. Additionally, 3D analytical models of the experimental beams were used according to material properties, and the results were compared with two previous cases. There was good consistency between the analytical and numerical results with low error, which increased by wave radius. It is concluded that the proposed method could reliably be used for design purposes.

Non-deformable support system application at tunnel-34 of Ankara-Istanbul high speed railway project

  • Aksoy, C.O.;Uyar, G.G.;Posluk, E.;Ogul, K.;Topal, I.;Kucuk, K.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.869-886
    • /
    • 2016
  • Non-Deformable Support System (NDSS) is one of the support system analysis methods. It is likely seen as numerical analysis. Obviously, numerical modeling is the key tool for this system but not unique. Although the name of the system makes you feel that there is no deformation on the support system, it is not true. The system contains some deformation but in certain tolerance determined by the numerical analyses. The important question is what is the deformation tolerance? Zero deformation in the excavation environment is not the case, actually. However, deformation occurred after supporting is important. This deformation amount will determine the performance of the applied support. NDSS is a stronghold analysis method applied in full to make this work. While doing this, NDSS uses the properties of rock mass and material, various rock mass failure criteria, various material models, different excavation geometries, like other methods. The thing that differ NDSS method from the others is that NDSS makes analysis using the time dependent deformation properties of rock mass and engineering judgement. During the evaluation process, NDSS gives the permission of questioning the field observations, measurements and timedependent support performance. These transactions are carried out with 3-dimensional numeric modeling analysis. The goal of NDSS is to design a support system which does not allow greater deformation of the support system than that calculated by numerical modeling. In this paper, NDSS applied to the problems of Tunnel 34 of the same Project (excavated with NATM method, has a length of 2218 meters), which is driven in graphite schist, was illustrated. Results of the system analysis and insitu measurements successfully coincide with each other.

Cylindrical bending of multilayered composite laminates and sandwiches

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.2
    • /
    • pp.113-148
    • /
    • 2016
  • In a whole variety of higher order plate theories existing in the literature no consideration is given to the transverse normal strain / deformation effects on flexural response when these higher order theories are applied to shear flexible composite plates in view of minimizing the number of unknown variables. The objective of this study is to carry out cylindrical bending of simply supported laminated composite and sandwich plates using sinusoidal shear and normal deformation plate theory. The most important feature of the present theory is that it includes the effects of transverse normal strain/deformation. The displacement field of the presented theory is built upon classical plate theory and uses sine and cosine functions in terms of thickness coordinate to include the effects of shear deformation and transverse normal strain. The theory accounts for realistic variation of the transverse shear stress through the thickness and satisfies the shear stress free conditions at the top and bottom surfaces of the plate without using the problem dependent shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of minimum potential energy. The accuracy of the proposed theory is examined for several configurations of laminates under various static loadings. Some problems are presented for the first time in this paper which can become the base for future research. For the comparison purpose, the numerical results are also generated by using higher order shear deformation theory of Reddy, first-order shear deformation plate theory of Mindlin and classical plate theory. The numerical results show that the present theory provides displacements and stresses very accurately as compared to those obtained by using other theories.

Evaluation of Formability Dependent on the Location of Injection Gate of Vertical Machining Center ATC Tool Port Using Injection Molding Analysis (사출성형해석을 이용한 수직머시닝센터 ATC 툴 포트의 사출 게이트 위치에 따른 성형성 평가)

  • Lee, Yu-Wool;Park, Chul-Woo;Kim, Jin-Rok;Choi, Hyun-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.129-135
    • /
    • 2021
  • Injection molding is a manufacturing method of melting the polymer resin and injecting it into a mold to molding it into the desired form. Due to the short molding time and outstanding formability, complex products can be shaped with high precision and it is the most widely used polymer molding method. However, there may be areas that are not filled depending on the location of the injection gate where polymer resin is injected. Formability is determined by deformation and surface precision due to the impact of residual stress after molding. Hence, choosing the location of the injection gate is very important and molding analysis of injection molding is essential to reduce the cost of the mold. This study evaluated the injection formability based on the location of the injection gate of the vertical machining center ATC tool port using injection molding analysis and the results were compared and analyzed. Injection molding analysis was conducted on filling, packing, and deformation according to the location of the gate of the ATC tool port. From each injection gate location, filling time, pressure, and maximum deformation were compared. At gate 2, conditions of molding time and the location of the gate were far superior in production and quality. Gate 2 produced the smallest deformation of 0.779mm with the best quality.

A high-order gradient model for wave propagation analysis of porous FG nanoplates

  • Shahsavari, Davood;Karami, Behrouz;Li, Li
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • A high-order nonlocal strain gradient model is developed for wave propagation analysis of porous FG nanoplates resting on a gradient hybrid foundation in thermal environment, for the first time. Material properties are assumed to be temperature-dependent and graded in the nanoplate thickness direction. To consider the thermal effects, uniform, linear, nonlinear, exponential, and sinusoidal temperature distributions are considered for temperature-dependent FG material properties. On the basis of the refined-higher order shear deformation plate theory (R-HSDT) in conjunction with the bi-Helmholtz nonlocal strain gradient theory (B-H NSGT), Hamilton's principle is used to derive the equations of wave motion. Then the dispersion relation between frequency and wave number is solved analytically. The influences of various parameters (such as temperature rise, volume fraction index, porosity volume fraction, lower and higher order nonlocal parameters, material characteristic parameter, foundations components, and wave number) on the wave propagation behaviors of porous FG nanoplates are investigated in detail.

Elasto-plastic stability of circular cylindrical shells subjected to axial load, varying as a power function of time

  • Sofiyev, A.H.;Schnack, E.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.621-639
    • /
    • 2006
  • Stability of a cylindrical shell subject to a uniform axial compression, which is a power function of time, is examined within the framework of small strain elasto-plasticity. The material of the shell is incompressible and the effect of the elastic unloading is considered. Initially, employing the infinitesimal elastic-plastic deformation theory, the fundamental relations and Donnell type stability equations for a cylindrical shell have been obtained. Then, employing Galerkin's method, those equations have been reduced to a time dependent differential equation with variable coefficient. Finally, for two initial conditions applying a Ritz type variational method, the critical static and dynamic axial loads, the corresponding wave numbers and dynamic factor have been found. Using those results, the effects of the variations of loading parameters and the variations of power of time in the axial load expression as well as the variations of the radius to thickness ratio on the critical parameters of the shells for two initial conditions are also elucidated. Comparing results with those in the literature validates the present analysis.