• Title/Summary/Keyword: Time-delay neural network

Search Result 127, Processing Time 0.043 seconds

A Study on Center Detection and Motion Analysis of a Moving Object by Using Kohonen Networks and Time Delay Neural Networks

  • Kim, Jong-Young;Hwang, Jung-Ku;Jang, Tae-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.63.5-63
    • /
    • 2001
  • In this paper, moving objects tracking and dynamic characteristic analysis are studied. Kohonen´s self-organizing neural network models are used for moving objects tracking and time delay neural networks are used for dynamic characteristic analysis. Instead of objects brightness, neuron projections by Kohonen Networks are used. The motion of target objects can be analyzed by using the differential neuron image between the two projections. The differential neuron image which is made by two consecutive neuron projections is used for center detection and moving objects tracking. The two differential neuron images which are made by three consecutive neuron projections are used for the moving trajectory estimation.

  • PDF

A Study on the Prediction of the Nonlinear Chaotic Time Series Using a Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경 회로망을 이용한 비선형 혼돈 시계열의 예측에 관한 연구)

  • Lee, Hye-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2209-2211
    • /
    • 2004
  • Unlike the wavelet neural network, since a mother wavelet layer of the self-recurrent wavelet neural network (SRWNN) is composed of self-feedback neurons, it has the ability to store past information of the wavelet. Therefore we propose the prediction method for the nonlinear chaotic time series model using a SRWNN. The SRWNN model is learned for the modeling of a function such that the inputs arc known values of the time series and the output is the value in the future. The parameters of the network are tuned to minimize the difference between the nonlinear mapping of the chaotic time series and the output of SRWNN using the gradient-descent method for the adaptive backpropagation algorithm. Through the computer simulations, we demonstrate the feasibility and the effectiveness of our method for the prediction of the logistic map and the Mackey-Glass delay-differential equation as a nonlinear chaotic time series.

  • PDF

A Study on an Adaptive UPC Algorithm Based on Traffic Multiplexing Information in ATM Networks (ATM 망에서 트래픽 다중화 정보에 의한 적응적 UPC 알고리즘에 관한 연구)

  • Kim, Yeong-Cheol;Byeon, Jae-Yeong;Seo, Hyeon-Seung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2779-2789
    • /
    • 1999
  • In this paper, we propose a new neural Buffered Leaky Bucket algorithm for preventing the degradation of network performance caused by congestion and dealing with the traffic congestion in ATM networks. We networks. We justify the validity of the suggested method through performance comparison in aspects of cell loss rate and mean transfer delay under a variety of traffic conditions requiring the different QoS(Quality of Service). also, the cell scheduling algorithms such as DWRR and DWEDF used for multiplexing the incoming traffics are induced to get the delay time of the traffics fairly. The network congestion information from cell scheduler is used to control the predicted traffic loss rate of Neural Leaky Bucket, and token generation rate is changed by the predicted values. The prediction of traffic loss rate by neural networks can effectively reduce the cell loss rate and the cell transfer delay of next incoming cells and be applied to other traffic control systems. Computer simulation results performed for traffic prediction show that QoSs of the various kinds of traffics are increased.

  • PDF

A Study on DC Motor Control based on Artificial Neural Networks (인공신경회로망에 기초한 직류모터제어에 관한 연구)

  • 박진현;김영규
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.44-52
    • /
    • 1994
  • In this paper, we assume that the dynamics of DC motor and nonlinear load are unknown. We propose an inverse dynamic model of DC motor and nonlinear load using the artificial neural network and construck speed control system based on the proposed dynamic model. We also propose another dynamic model with speed prediction scheme using the artificial neural network that removes the undesirable time delay effect caused by the computation time during the real-time control. We suggest a dynamic model which has arbitrary number of speed arguments and is especially effective when the motor and load has large moment of inertia. Next, we suggest a controller that combine the neurocontrol and PID control with constant gain. We show that the proposed neurocontrol systems have capabilities of noise rejection and generalization to have good velocity tracking through computer simulations and experiments.

  • PDF

Trajectoroy control for a Robot Manipulator by Using Multilayer Neural Network (다층 신경회로망을 사용한 로봇 매니퓰레이터의 궤적제어)

  • 안덕환;이상효
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.11
    • /
    • pp.1186-1193
    • /
    • 1991
  • This paper proposed a trajectory controlmethod for a robot manipulator by using neural networks. The total torque for a manipulator is a sum of the linear feedback controller torque and the neural network feedfoward controller torque. The proposed neural network is a multilayer neural network with time delay elements, and learns the inverse dynamics of manipulator by means of PD(propotional denvative)controller error torque. The error backpropagation (BP) learning neural network controller does not directly require manipulator dynamics information. Instead, it learns the information by training and stores the information and connection weights. The control effects of the proposed system are verified by computer simulation.

  • PDF

Real Time Traffic Signal Plan using Neural Network

  • Choi Myeong-Bok;Hong You-Sik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.360-366
    • /
    • 2005
  • In the past, when there were few vehicles on the road, the T.O.D.(Time of Day) traffic signal worked very well. The T.O.D. signal operates on a preset signal cycling which cycles on the basis of the average number of average passenger cars in the memory device of an electric signal unit. Now days, with increasing many vehicles on restricted roads, the conventional traffic light creates startup-delay time and end-lag-time. The conventional traffic light loses the function of optimal cycle. And so, $30-45\%$ of conventional traffic cycle is not matched to the present traffic cycle. In this paper we proposes electro sensitive traffic light using fuzzy look up table method which will reduce the average vehicle waiting time and improve average vehicle speed. Computer simulation results prove that reducing the average vehicle waiting time which proposed considering passing vehicle length for optimal traffic cycle is better than fixed signal method which doesn't consider vehicle length.

A Study on the Enhancement of Ultrasonic Signal Recognition in Ferrite Carbon Steel Weld Zone Using Neural Networks (신경회로망을 이용한 페라이트계 탄소강 용접부의 초음파 신호 인식 향상에 관한 연구)

  • Yun, In-Sik;Park, Won-Kyou;Yi, Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.158-164
    • /
    • 2002
  • This paper proposes the optimization of ultrasonic signal recognition in ferrite carbon steel weld zone using neural networks. For these purposes, the ultrasonic signals for defects as porosity, incomplete penetration and slag inclusion in the weld zone are acquired in the type of time series data. And then their applications evaluated feature extraction based on the time-frequency-attractor domain(peak to peak, rise time, rise slope, fall time, fall slope, pulse duration, power spectrum, and bandwidth) and attractor characteristics (fractal dimension and attractor quadrant) etc. The proposed neural networks system in this study can enhances performance of ultrasonic signal recognition.

An ANN-based Intelligent Spectrum Sensing Algorithm for Space-based Satellite Networks

  • Xiujian Yang;Lina Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.980-998
    • /
    • 2023
  • In Low Earth Orbit (LEO) satellite networks, satellites operate fast and the inter-satellite link change period is short. In order to sense the spectrum state in LEO satellite networks in real-time, a space-based satellite network intelligent spectrum sensing algorithm based on artificial neural network (ANN) is proposed, while Geosynchronous Earth Orbit (GEO) satellites are introduced to make fast and effective judgments on the spectrum state of LEO satellites by using their stronger arithmetic power. Firstly, the visibility constraints between LEO satellites and GEO satellites are analyzed to derive the inter-satellite link building matrix and complete the inter-satellite link situational awareness. Secondly, an ANN-based energy detection (ANN-ED) algorithm is proposed based on the traditional energy detection algorithm and artificial neural network. The ANN module is used to determine the spectrum state and optimize the traditional energy detection algorithm. GEO satellites are used to fuse the information sensed by LEO satellites and then give the spectrum decision, thereby realizing the inter-satellite spectrum state sensing. Finally, the sensing quality is evaluated by the analysis of sensing delay and sensing energy consumption. The simulation results show that our proposed algorithm has lower complexity, the sensing delay and sensing energy consumption compared with the traditional energy detection method.

Determination of Optimal Traffic Signal Cycle using Neural Network (신경망을 이용한 최적 교통신호주기 결정)

  • 홍유식;박종국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.51-62
    • /
    • 1996
  • Electro sensitive traffic system can not consider passenger car unit, so it causes start up delay time and passenger waiting time. In this paper, it antecedently creates passenger car unit at the bottom intersection using neural network. But, sometimes it can make mistakes due to changes in car weight, car speed, and passing area. Therefore, it consequently reduces the car waiting time and start-up delay time using fuzzy control of feed-back data. Moreover, to prevent spillback, it can adapt control even though upper traffic intersection has a different saturation rate, road length, road slope and road width.

  • PDF

GLOBAL ROBUST STABILITY OF TIME-DELAY SYSTEMS WITH DISCONTINUOUS ACTIVATION FUNCTIONS UNDER POLYTOPIC PARAMETER UNCERTAINTIES

  • Wang, Zengyun;Huang, Lihong;Zuo, Yi;Zhang, Lingling
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.89-102
    • /
    • 2010
  • This paper concerns the problem of global robust stability of a time-delay discontinuous system with a positive-defined connection matrix under polytopic-type uncertainty. In order to give the stability condition, we firstly address the existence of solution and equilibrium point based on the properties of M-matrix, Lyapunov-like approach and the theories of differential equations with discontinuous right-hand side as introduced by Filippov. Second, we give the delay-independent and delay-dependent stability condition in terms of linear matrix inequalities (LMIs), and based on Lyapunov function and the properties of the convex sets. One numerical example demonstrate the validity of the proposed criteria.