• Title/Summary/Keyword: Time-Series Pattern Recognition

Search Result 52, Processing Time 0.023 seconds

Text-mining Techniques for Metabolic Pathway Reconstruction (대사경로 재구축을 위한 텍스트 마이닝 기법)

  • Kwon, Hyuk-Ryul;Na, Jong-Hwa;Yoo, Jae-Soo;Cho, Wan-Sup
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.4
    • /
    • pp.138-147
    • /
    • 2007
  • Metabolic pathway is a series of chemical reactions occuning within a cell and can be used for drug development and understanding of life phenomenon. Many biologists are trying to extract metabolic pathway information from huge literatures for their metabolic-circuit regulation study. We propose a text-mining technique based on the keyword and pattern. Proposed technique utilizes a web robot to collect huge papers and stores them into a local database. We use gene ontology to increase compound recognition rate and NCBI Tokenizer library to recognize useful information without compound destruction. Furthermore, we obtain useful sentence patterns representing metabolic pathway from papers and KEGG database. We have extracted 66 patterns in 20,000 documents for Glycosphingolipid species from KEGG, a representative metabolic database. We verify our system for nineteen compounds in Glycosphingolipid species. The result shows that the recall is 95.1%, the precision 96.3%, and the processing time 15 seconds. Proposed text mining system is expected to be used for metabolic pathway reconstruction.

  • PDF

Generalized Sigmidal Basis Function for Improving the Learning Performance fo Multilayer Perceptrons (다층 퍼셉트론의 학습 성능 개선을 위한 일반화된 시그모이드 베이시스 함수)

  • Park, Hye-Yeong;Lee, Gwan-Yong;Lee, Il-Byeong;Byeon, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.11
    • /
    • pp.1261-1269
    • /
    • 1999
  • 다층 퍼셉트론은 다양한 응용 분야에 성공적으로 적용되고 있는 대표적인 신경회로망 모델이다. 그러나 다층 퍼셉트론의 학습에서 나타나는 플라토에 기인한 느린 학습 속도와 지역 극소는 실제 응용문제에 적용함에 있어서 가장 큰 문제로 지적되어왔다. 이 문제를 해결하기 위해 여러 가지 다양한 학습알고리즘들이 개발되어 왔으나, 계산의 비효율성으로 인해 실제 문제에는 적용하기 힘든 예가 많은 등, 현재까지 만족할 만한 해결책은 제시되지 못하고 있다. 본 논문에서는 다층퍼셉트론의 베이시스 함수로 사용되는 시그모이드 함수를 보다 일반화된 형태로 정의하여 사용함으로써 학습에 있어서의 플라토를 완화하고, 지역극소에 빠지는 것을 줄이는 접근방법을 소개한다. 본 방법은 기존의 변형된 가중치 수정식을 사용한 학습 속도 향상의 방법들과는 다른 접근 방법을 택함으로써 기존의 방법들과 함께 사용하는 것이 가능하다는 특징을 갖고 있다. 제안하는 방법의 성능을 확인하기 위하여 간단한 패턴 인식 문제들에의 적용 실험 및 기존의 학습 속도 향상 방법을 함께 사용하여 시계열 예측 문제에 적용한 실험을 수행하였고, 그 결과로부터 제안안 방법의 효율성을 확인할 수 있었다. Abstract A multilayer perceptron is the most well-known neural network model which has been successfully applied to various fields of application. Its slow learning caused by plateau and local minima of gradient descent learning, however, have been pointed as the biggest problems in its practical use. To solve such a problem, a number of researches on learning algorithms have been conducted, but it can be said that none of satisfying solutions have been presented so far because the problems such as computational inefficiency have still been existed in these algorithms. In this paper, we propose a new learning approach to minimize the effect of plateau and reduce the possibility of getting trapped in local minima by generalizing the sigmoidal function which is used as the basis function of a multilayer perceptron. Adapting a new approach that differs from the conventional methods with revised updating equation, the proposed method can be used together with the existing methods to improve the learning performance. We conducted some experiments to test the proposed method on simple problems of pattern recognition and a problem of time series prediction, compared our results with the results of the existing methods, and confirmed that the proposed method is efficient enough to apply to the real problems.