• Title/Summary/Keyword: Time-Series Pattern Recognition

Search Result 52, Processing Time 0.022 seconds

Modeling Procedure to Adapt to Change of Trend of Water Demand: Application of Bayesian Parameter Estimation (물수요의 추세 변화의 적응을 위한 모델링 절차 제시:베이지안 매개변수 산정법 적용)

  • Lee, Sangeun;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.241-249
    • /
    • 2009
  • It is well known that the trend of water demand in large-size water supply systems has been suddenly changed, and many expansions of water supply facilities become unnecessary. To be cost-effective, thus, politicians as well as many professionals lay stress on the adaptive management of water supply facilities. Failure in adapting to the new trend of demand is sure to be the most critical reason of unnecessary expansions. Hence, we try to develop the model and modeling procedure that do not depend on the old data of demand, and provide engineers with the fast learning process. To forecast water demand of Seoul, the Bayesian parameter estimation was applied, which is a representative method for statistical pattern recognition. It results that we can get a useful time-series model after observing water demand during 6 years, although trend of water demand were suddenly changed.

Analysis of Partial Discharge Phenomena by means of CAPD (CAPD기법을 이용한 부분방전 현상 해석에 관한 연구)

  • Kim, Sung-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.939-944
    • /
    • 2002
  • PD phenomena can be regarded as a deterministic dynamical process where PD should be occurred if the local electric field be reached to be sufficiently high. And thus, its mathematical model can be described by either difference equations or differential equations using several state variables obtained from the time sequential measured data of PD signals. These variables can provide rich and complex behavior of detectable time series, for which Chaos theory can be employed. In this respect, a new PD pattern recognition method is proposed and named as 'Chaotic Analysis of Partial Discharges (CAPD)' for this work. For this purpose, six types of specimen are designed and made as the models of the possible defects that may cause sudden failures of the underground power transmission cables under service, and partial discharge signals, generated from those samples, are detected and then analyzed by means of CAPD. Throughout the work, qualitative and quantitative properties related to the PD signals from different defects are analyzed by use of attractor in phase space, information dimensions ($D_0$ and D2), Lyapunov exponents and K-S entropy as well. Based on these results, it could be pointed out that the nature of defect seems to be identified more distinctively when the CAPD is combined with traditional statistical method such as PRPDA. Furthermore, the relationship between PD magnitude and the occurrence timing is investigated with a view to simulating PD phenomena.

  • PDF

Adaptive Milling Process Modeling and Nerual Networks Applied to Tool Wear Monitoring (밀링공정의 적응모델링과 공구마모 검출을 위한 신경회로망의 적용)

  • Ko, Tae-Jo;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.138-149
    • /
    • 1994
  • This paper introduces a new monitoring technique which utilizes an adaptive signal processing for feature generation, coupled with a multilayered merual network for pattern recognition. The cutting force signal in face milling operation was modeled by a low order discrete autoregressive model, shere parameters were estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(recursive least square) method with discounted measurements. The influences of the adaptation algorithm parameters as well as some considerations for modeling on the estimation results are discussed. The sensitivity of the extimated model parameters to the tool state(new and worn tool)is presented, and the application of a multilayered neural network to tool state monitoring using the previously generated features is also demonstrated with a high success rate. The methodology turned out to be quite suitable for in-process tool wear monitoring in the sense that the model parameters are effective as tool state features in milling operation and that the classifier successfully maps the sensors data to correct output decision.

  • PDF

Training Sample of Artificial Neural Networks for Predicting Signalized Intersection Queue Length (신호교차로 대기행렬 예측을 위한 인공신경망의 학습자료 구성분석)

  • 한종학;김성호;최병국
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.75-85
    • /
    • 2000
  • The Purpose of this study is to analyze wether the composition of training sample have a relation with the Predictive ability and the learning results of ANNs(Artificial Neural Networks) fur predicting one cycle ahead of the queue length(veh.) in a signalized intersection. In this study, ANNs\` training sample is classified into the assumption of two cases. The first is to utilize time-series(Per cycle) data of queue length which would be detected by one detector (loop or video) The second is to use time-space correlated data(such as: a upstream feed-in flow, a link travel time, a approach maximum stationary queue length, a departure volume) which would be detected by a integrative vehicle detection systems (loop detector, video detector, RFIDs) which would be installed between the upstream node(intersection) and downstream node. The major findings from this paper is In Daechi Intersection(GangNamGu, Seoul), in the case of ANNs\` training sample constructed by time-space correlated data between the upstream node(intersection) and downstream node, the pattern recognition ability of an interrupted traffic flow is better.

  • PDF

An Empiricl Study on the Learnign of HMM-Net Classifiers Using ML/MMSE Method (ML/MMSE를 이용한 HMM-Net 분류기의 학습에 대한 실험적 고찰)

  • Kim, Sang-Woon;Shin, Seong-Hyo
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.6
    • /
    • pp.44-51
    • /
    • 1999
  • The HMM-Net is a neural network architecture that implements the computation of output probabilities of a hidden Markov model (HMM). The architecture is developed for the purpose of combining the discriminant power of neural networks with the time-domain modeling capability of HMMs. Criteria of maximum likehood(ML) and minimization of mean squared error(MMSE) are used for learning HMM-Net classifiers. The criterion MMSE is better than ML when initial learning condition is well established. However Ml is more useful one when the condition is incomplete[3]. Therefore we propose an efficient learning method of HMM-Net classifiers using a hybrid criterion(ML/MMSE). In the method, we begin a learning with ML in order to get a stable start-point. After then, we continue the learning with MMSE to search an optimal or near-optimal solution. Experimental results for the isolated numeric digits from /0/ to /9/, a training and testing time-series pattern set, show that the performance of the proposed method is better than the others in the respects of learning and recognition rates.

  • PDF

CNN Model-based Arrhythmia Classification using Image-typed ECG Data (이미지 타입의 ECG 데이터를 사용한 CNN 모델 기반 부정맥 분류)

  • Yeon-Suk Bang;Myung-Soo Jang;Yousik Hong;Sang-Suk Lee;Jun-Sang Yu;Woo-Beom Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.205-212
    • /
    • 2023
  • Among cardiac diseases, arrhythmias can lead to serious complications such as stroke, heart attack, and heart failure if left untreated, so continuous and accurate ECG monitoring is crucial for clinical care. However, the accurate interpretation of electrocardiogram (ECG) data is entirely dependent on medical doctors, which requires additional time and cost. Therefore, this paper proposes an arrhythmia recognition module for the purpose of developing a medical platform through the analysis of abnormal pulse waveforms based on Lifelogs. The proposed method is to convert ECG data into image format instead of time series data, apply visual pattern recognition technology, and then detect arrhythmia using CNN model. In order to validate the arrhythmia classification of the CNN model by image type conversion of ECG data proposed in this paper, the MIT-BIH arrhythmia dataset was used, and the result showed an accuracy of 97%.

A Design And Implementation Of Simple Neural Networks System In Turbo Pascal (단순신경회로망의 설계 및 구현)

  • 우원택
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2000.11a
    • /
    • pp.1.2-24
    • /
    • 2000
  • The field of neural networks has been a recent surge in activity as a result of progress in developments of efficient training algorithms. For this reason, and coupled with the widespread availability of powerful personal computer hardware for running simulations of networks, there is increasing focus on the potential benefits this field can offer. The neural network may be viewed as an advanced pattern recognition technique and can be applied in many areas such as financial time series forecasting, medical diagnostic expert system and etc.. The intention of this study is to build and implement one simple artificial neural networks hereinafter called ANN. For this purpose, some literature survey was undertaken to understand the structures and algorithms of ANN theoretically. Based on the review of theories about ANN, the system adopted 3-layer back propagation algorithms as its learning algorithm to simulate one case of medical diagnostic model. The adopted ANN algorithm was performed in PC by using turbo PASCAL and many input parameters such as the numbers of layers, the numbers of nodes, the number of cycles for learning, learning rate and momentum term. The system output more or less successful results which nearly agree with goals we assumed. However, the system has some limitations such as the simplicity of the programming structure and the range of parameters it can dealing with. But, this study is useful for understanding general algorithms and applications of ANN system and can be expanded for further refinement for more complex ANN algorithms.

  • PDF

Prediction of Power Consumptions Based on Gated Recurrent Unit for Internet of Energy (에너지 인터넷을 위한 GRU기반 전력사용량 예측)

  • Lee, Dong-gu;Sun, Young-Ghyu;Sim, Is-sac;Hwang, Yu-Min;Kim, Sooh-wan;Kim, Jin-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.120-126
    • /
    • 2019
  • Recently, accurate prediction of power consumption based on machine learning techniques in Internet of Energy (IoE) has been actively studied using the large amount of electricity data acquired from advanced metering infrastructure (AMI). In this paper, we propose a deep learning model based on Gated Recurrent Unit (GRU) as an artificial intelligence (AI) network that can effectively perform pattern recognition of time series data such as the power consumption, and analyze performance of the prediction based on real household power usage data. In the performance analysis, performance comparison between the proposed GRU-based learning model and the conventional learning model of Long Short Term Memory (LSTM) is described. In the simulation results, mean squared error (MSE), mean absolute error (MAE), forecast skill score, normalized root mean square error (RMSE), and normalized mean bias error (NMBE) are used as performance evaluation indexes, and we confirm that the performance of the prediction of the proposed GRU-based learning model is greatly improved.

Analysis and Prediction Methods of Marine Accident Patterns related to Vessel Traffic using Long Short-Term Memory Networks (장단기 기억 신경망을 활용한 선박교통 해양사고 패턴 분석 및 예측)

  • Jang, Da-Un;Kim, Joo-Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.780-790
    • /
    • 2022
  • Quantitative risk levels must be presented by analyzing the causes and consequences of accidents and predicting the occurrence patterns of the accidents. For the analysis of marine accidents related to vessel traffic, research on the traffic such as collision risk analysis and navigational path finding has been mainly conducted. The analysis of the occurrence pattern of marine accidents has been presented according to the traditional statistical analysis. This study intends to present a marine accident prediction model using the statistics on marine accidents related to vessel traffic. Statistical data from 1998 to 2021, which can be accumulated by month and hourly data among the Korean domestic marine accidents, were converted into structured time series data. The predictive model was built using a long short-term memory network, which is a representative artificial intelligence model. As a result of verifying the performance of the proposed model through the validation data, the RMSEs were noted to be 52.5471 and 126.5893 in the initial neural network model, and as a result of the updated model with observed datasets, the RMSEs were improved to 31.3680 and 36.3967, respectively. Based on the proposed model, the occurrence pattern of marine accidents could be predicted by learning the features of various marine accidents. In further research, a quantitative presentation of the risk of marine accidents and the development of region-based hazard maps are required.

Rice Yield Estimation of South Korea from Year 2003-2016 Using Stacked Sparse AutoEncoder (SSAE 알고리즘을 통한 2003-2016년 남한 전역 쌀 생산량 추정)

  • Ma, Jong Won;Lee, Kyungdo;Choi, Ki-Young;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.631-640
    • /
    • 2017
  • The estimation of rice yield affects the income of farmers as well as the fields related to agriculture. Moreover, it has an important effect on the government's policy making including the control of supply demand and the price estimation. Thus, it is necessary to build the crop yield estimation model and from the past, many studies utilizing empirical statistical models or artificial neural network algorithms have been conducted through climatic and satellite data. Presently, scientists have achieved successful results with deep learning algorithms in the field of pattern recognition, computer vision, speech recognition, etc. Among deep learning algorithms, the SSAE (Stacked Sparse AutoEncoder) algorithm has been confirmed to be applicable in the field of forecasting through time series data and in this study, SSAE was utilized to estimate the rice yield in South Korea. The climatic and satellite data were used as the input variables and different types of input data were constructed according to the period of rice growth in South Korea. As a result, the combination of the satellite data from May to September and the climatic data using the 16 day average value showed the best performance with showing average annual %RMSE (percent Root Mean Square Error) and region %RMSE of 7.43% and 7.16% that the applicability of the SSAE algorithm could be proved in the field of rice yield estimation.