• Title/Summary/Keyword: Time-Reversal Technique

Search Result 46, Processing Time 0.021 seconds

Use of Time Reversal Techniques for Focusing of Ultrasonic Array Transducer Beams

  • Kim, Hak-Joon;Song, Sung-Jin;Thompson R. Bruce;Kim, Jae-Hee;Eom, Heung-Sup
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.190-197
    • /
    • 2006
  • For enhancement of flaw detactability using array transducers, focusing of ultrasonic waves on a target in an inhomogeneous medium or through a complex geometry is important. But focusing can be strongly degraded by geometrical distortion of field radiated by the array transducers or by sound speed fluctuations in the propagating medium. In recent years, the time reversal technique has been proposed. Thus, in this paper, we describe the basic principal of the time reversal technique for focusing. Then, the implementation results of the time reversal technique for ultrasonic inspections using bulk waves and guided waves generated by array transducers are presented.

Shifted Time Reversal Technique for Two-user Wireless Communication Using Variable Rate Back-off (두 명의 사용자를 위한 무선 통신에서 유동적인 전송률 Back-off를 이용하는 지연 Time Reversal 기술)

  • Pambudi, Sigit Aryo;Choi, Seung-Kyu;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.5
    • /
    • pp.33-39
    • /
    • 2011
  • We studied the performance of a two-user time reversal multiple input single output scheme combined with the shifted transmission technique in a variable rate back-off scenario, called shifted time reversal (TR), that minimizes both intersymbol interference and multiuser interference. We compare the bit error rate performance of the shifted TR scheme to both full-rate TR and full back-off TR schemes and demonstrate its superiority to shifted zero forcing scheme when the guard interval is larger than one.

Structural Damage Diagnosis Method by Using the Time-Reversal Property of Guided Waves (유도초음파의 시간.역전 현상을 활용한 구조손상 진단기법)

  • Lee, U-Sik;Choi, Jung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.64-74
    • /
    • 2010
  • This paper proposes a new TR-based baseline-free SHM technique in which the time-reversal (TR) property of the guided Lamb waves is utilized. The new TR-based SHM technique has two distinct features when compared with the other TR-based SHM techniques: (1) The backward TR process commonly conducted by the measurement is replaced by the computation-based process; (2) In place of the comparison method, the TOF information of the damage signal extracted from the reconstructed signal is used for the damage diagnosis in conjunction with the imaging method which enables us to represent the damage as an image. The proposed TR-based SHM technique is then validated through the damage diagnosis experiment for an aluminum plate with a damage at different locations.

Underwater Acoustic Barrier with Passive Ocean Time Reversal and Application to Underwater Detection (수동형 해양 시역전 수중음향장벽과 수중탐지에의 응용)

  • Shin, Keecheol;Kim, Jeasoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.551-560
    • /
    • 2012
  • Target detection by acoustic barrier method includes active and passive sonar technique and time reversal process whose theoretical background is already well defined. In this paper, the concept and theory of underwater detection by passive ocean time reversal is established. Also, the reason that this study was conducted was to investigate feasibility of complex mathematical modeling to provide some predictive capability for underwater acoustic barrier with passive time reversal. It may eventually lead to a useful predictive tool when designing underwater acoustic barrier detection system using the passive time reversal concept.

Analysis of passive time-reversal communication performance in shallow water with underwater sound channel (음향채널이 존재하는 천해에서의 수동 시역전 통신 성능 분석)

  • Choi, Kang-Hoon;Kim, Sunhyo;Choi, Jee Woong;Kim, Hyeonsu;Kim, Byoung-Nam
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2018
  • A passive time-reversal technique can improve error performance of the underwater communication system by reducing influence of inter-symbol interferences, which is caused by a multipath channel response. The passive time-reversal communication system equipped with numerous receivers generally can obtain superior error performance since larger diversity gain can be obtained as the number of available received signal increased. In this paper, we analyze the optimal number and combination of receivers that can approximately achieve the best error performance when using the limited number of receivers. For this analysis, we use communication data collected during SAVEX15 (Shallow-water Acoustic Variability Experiment 2015) carried out in the south-western part of Jeju Island from May 14 to May 28, 2015. Analysis results show that there are depths of energy concentration due to the channel characteristics in which the underwater sound channel are present, and the passive time-reversal technique using the limited number of the receivers can derive near-optimal communication performance if the receivers for time-reversal processing are located at the depths where energy is concentrated.

Nonlinear Time Reversal Focusing and Detection of Fatigue Crack

  • Jeong, Hyun-Jo;Barnard, Dan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.355-361
    • /
    • 2012
  • This paper presents an experimental study on the detection and location of nonlinear scattering source due to the presence of fatigue crack in a laboratory specimen. The proposed technique is based on a combination of nonlinear elastic wave spectroscopy(NEWS) and time reversal(TR) focusing approach. In order to focus on the nonlinear scattering position due to the fatigue crack, we employed only one transmitting transducer and one receiving transducer, taking advantage of long duration of reception signal that includes multiple linear scattering such as mode conversion and boundary reflections. NEWS technique was then used as a pre-treatment of TR for spatial focusing of reemitted second harmonic signal. The robustness of this approach was demonstrated on a cracked specimen and the nonlinear TR focusing behavior is observed on the crack interface from which the second harmonic signal was originated.

Random Sign Reversal Technique in Space Frequency Block Code for Single Carrier Modulation (단일 반송파 변조를 위한 공간 주파수 블록 코드의 난수 부호 반전 기법)

  • Jung, Hyeok-Koo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.5
    • /
    • pp.25-36
    • /
    • 2022
  • This paper proposes a random sign reversal technique in space frequency block code for single carrier modulation. The traditional space time and frequency block coding technique may be confronted with radio environments openly, severe radio hijacking problems are to be overcome. In order to avoid such an open radio issue, random coded data protection technique for space-time block code was proposed, but this algorithm can change channel combination per an Orthogonal Frequency Division Multiplexing block. This kind of slow switching increases the probability that nearby receivers will detect the transmitted data. This paper proposes a fast switching algorithm per data symbols' basis which is a random sign reversal technique in space frequency block code for Single Carrier Modulation. It is shown in simulation that the proposed one has a superior performance in comparison with the performance of the receiver which do not know the random timing sequence of sign reversal.

Imaging of a Defect in Thin Plates Using the Time Reversal of Single Mode Lamb Wave: Simulation

  • Jeong, Hyun-Jo;Lee, Jung-Sik;Bae, Sung-Min;Lee, Hyun-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.261-270
    • /
    • 2010
  • This paper presents an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional side bands that contain the time-of-flight information on the defect location. One of the side band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free detection of a defect, so that experimental studies are needed to verify the proposed method and to be applied to real structure.

Spatial Characteristics of Time-Reversal Pulse in Rayleigh and Ricean Fading Channels (레일레이 및 라이시안 페이딩 채널 환경 내의 시역전 펄스의 공간 특성)

  • Yoo, Hyung-Ha;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.7
    • /
    • pp.648-656
    • /
    • 2009
  • We perform an analysis of the characteristics of the time-reversal pulse in Rayleigh or Ricean fading channel environments. We verify it by using Monte Carlo simulation. In a time-reversal system, each antenna in the time-reversal array receives signals from the transmitter and reverse the received signal in the time axis and then resend it to the original transmitter. We assume that the channel characteristics varies very slowly and the spatial separation between the antennas is not large. Hence the signals received by each antenna are correlated. In this paper, the effect of the correlation on the time-reversed pulse is examined, which includes the spatial properties of the time-reversal pulse such as the focus size, and spatial power distribution.

Time Reversal Focusing and Imaging of Point-Like Defects in Specimens with Nonplanar Surface Geometry

  • Jeong, Hyun-Jo;Lee, Hyun-Kee;Bae, Sung-Min;Lee, Jung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.569-577
    • /
    • 2010
  • Nonplanar surface geometries of components are frequently encountered in real ultrasonic inspection situations. Use of rigid array transducers can lead to beam defocusing and reduction of defect image quality due to the mismatch between the planar array and the changing surface. When a flexible array is used to fit the complex surface profile, the locations of array elements should be known to compute the delay time necessary for adaptive heam focusing. An alternative method is to employ the time reversal focusing technique that does not require a prior knowledge about the properties and structures of the specimen and the transducer. In this paper, a time reversal method is applied to simulate beam focusing of flexible arrays and imaging of point-like defects contained in specimens with nonplanar surface geometry. Quantitative comparisons are made for the performance of a number of array techniques in terms of the ability to focus and image three point-like reflectors positioned at regular intervals. The sinusoidal profile array studied here exhibits almost the same image quality as the flat, reference case.