• Title/Summary/Keyword: Time-Domain Analysis

Search Result 2,326, Processing Time 0.025 seconds

Effect on Vessel Motion Caused by Mitigation of Sloshing Impact Loads using Floaters (플로터를 이용한 슬로싱 충격하중 저감효과가 선체운동에 미치는 영향)

  • Nam, Jung-Woo;Kim, Kyung-Sung;Hwang, Sung-Chul;Heo, Jae-Kyung;Park, Jong-Chun;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • When a liquid cargo tank is partially filled with fluid, internal impact loads can be occurred from the vessel's motions. In this study, liquid sloshing problems with a thin top layer of particles with a lighter density than water and the coupling effects of the liquid-sloshing/vessel-motion were investigated in order to reduce the sloshing-induced impact loads. The PNU-MPS (Pusan-National-University-modified Moving Particle Simulation) method for solving the liquid motion inside a tank and the CHARM3D BEM (Boundary Element Method) based time-domain ship motion analysis program for vessel-motion simulation were coupled. From the simulation results, we could see that the floaters seemed to be quite effective at reducing the sloshing impact loads in the case of tank-only sloshing problems, but not as much for the coupling problem with vessel motion.

Preliminary Study on Structural Optimization with Control Variables Using Equivalent Static Loads for Spring-damper Control Systems (등가정하중을 이용한 스프링-댐퍼 제어시스템 구조물의 최적설계에 관한 기초연구)

  • Yoo, Nam-Sun;Jung, Ui-Jin;Park, Gyung-Jin;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.619-627
    • /
    • 2014
  • An optimization method is proposed for the simultaneous design of structural and control systems using the equivalent static loads. In the past researches, the control parameters of such feedback gains are obtained to improve some performance in the steady-state. However, the actuators which have position and velocity feedback gains should be designed to exhibit a good performance in the time domain. In other words, the system analysis should be conducted for the transient-state in dynamic manner. In this research, a new equivalent static loads method is presented to treat the control variables as the design variables. The equivalent static loads (ESLs) set is defined as a static load set which generates the same displacement field as that from dynamic loads at a certain time. The calculated sets of ESLs are applied as multiple loading conditions in the optimization process. Several examples are solved to validate the proposed method.

A Study on Sensor Motion-Induced Noise Reduction for Developing a Moving Transient Electromagnetic System (이동하면서 측정할 수 있는 시간영역전자탐사 시스템 개발을 위한 센서흔들림유도잡음 제거 연구)

  • Hwang, Hak Soo;Lee, Sang Kyu
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.53-57
    • /
    • 1998
  • Transient electromagnetic (TEM) method is also affected by cultural and natural electromagnetic (EM) noises, since it uses part of the broadband ($10^{-2}$ to $10^5Hz$) spectrum. Especially, predominant EM noise which affects a moving transmitter-receiver TEM system is sensor motion-induced noise. This noise is caused by the sensor motion in the earth magnetic field. The technique for reducing the sensor motion-induced EM noise presented in this paper is based on Halverson stacking. This Halverson stacking is generally used in a time-domain induced polarisation (IP) system to reject DC offset and linear drift. According to spectrum analysis of the vertical component of sensor motion-induced noise, the frequency range affected by the motion of an EM sensor is less than about 700 Hz in this study. With the decrease of the frequency, the spectral power caused by the motion of a sensor increases. For example, at the frequency of 200 Hz, the spectral power of the sensor motion-induced noise is $-90dBVrms^2$ while the spectral power of the EM noise measured with a fixed sensor on the ground is $-105dBVrms^2$, and at the frequency of 100 Hz, the spectral power of the sensor motion-induced noise is $-70dBVrms^2$ while the spectral power of the EM noise measured with a fixed sensor on the ground is $-105dBVrms^2$. With applying Halverson stacking to an artificial noise transient generated by adding a noise-free transient to sensor motion-induced noise measured without pulsing, it is shown that the filtered transient is nearly consistent with the noise-free transient within a delay time of $0.5{{\mu}sec}$. The inversion obtained from this filtered transient is in accord with the true model with an error of 5%.

  • PDF

Online correction of drift in structural identification using artificial white noise observations and an unscented Kalman Filter

  • Chatzi, Eleni N.;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.295-328
    • /
    • 2015
  • In recent years the monitoring of structural behavior through acquisition of vibrational data has become common practice. In addition, recent advances in sensor development have made the collection of diverse dynamic information feasible. Other than the commonly collected acceleration information, Global Position System (GPS) receivers and non-contact, optical techniques have also allowed for the synchronous collection of highly accurate displacement data. The fusion of this heterogeneous information is crucial for the successful monitoring and control of structural systems especially when aiming at real-time estimation. This task is not a straightforward one as measurements are inevitably corrupted with some percentage of noise, often leading to imprecise estimation. Quite commonly, the presence of noise in acceleration signals results in drifting estimates of displacement states, as a result of numerical integration. In this study, a new approach based on a time domain identification method, namely the Unscented Kalman Filter (UKF), is proposed for correcting the "drift effect" in displacement or rotation estimates in an online manner, i.e., on the fly as data is attained. The method relies on the introduction of artificial white noise (WN) observations into the filter equations, which is shown to achieve an online correction of the drift issue, thus yielding highly accurate motion data. The proposed approach is demonstrated for two cases; firstly, the illustrative example of a single degree of freedom linear oscillator is examined, where availability of acceleration measurements is exclusively assumed. Secondly, a field inspired implementation is presented for the torsional identification of a tall tower structure, where acceleration measurements are obtained at a high sampling rate and non-collocated GPS displacement measurements are assumed available at a lower sampling rate. A multi-rate Kalman Filter is incorporated into the analysis in order to successfully fuse data sampled at different rates.

BOTDA based water-filling and preloading test of spiral case structure

  • Cui, Heliang;Zhang, Dan;Shi, Bin;Peng, Shusheng
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 2018
  • In the water-filling and preloading test, the sensing cables were installed on the surface of steel spiral case and in the surrounding concrete to monitor the strain distribution of several cross-sections by using Brillouin Optical Time Domain Analysis (BOTDA), a kind of distributed optical fiber sensing (DOFS) technology. The average hoop strain of the spiral case was about $330{\mu}{\varepsilon}$ and $590{\mu}{\varepsilon}$ when the water-filling pressure in the spiral case was 2.6 MPa and 4.1 MPa. The difference between the measured and the calculated strain was only about $50{\mu}{\varepsilon}$. It was the first time that the stress adjustment of the spiral case was monitored by the sensing cable when the pressure was increased to 1 MPa and the residual strain of $20{\mu}{\varepsilon}$ was obtained after preloading. Meanwhile, the shrinkage of $70{\sim}100{\mu}{\varepsilon}$ of the surrounding concrete was effectively monitored during the depressurization. It is estimated that the width of the gap between the steel spiral case and the surrounding concrete was 0.51 ~ 0.75 mm. BOTDA based distributed optical fiber sensing technology can obtain continuous strain of the structure and it is more reliable than traditional point sensor. The strain distribution obtained by BOTDA provides strong support for the design and optimization of the spiral case structure.

The 40~50Day Intraseasonal Oscillation of the Geostationary Meteorological Satellite High Cloud Amount (GMS 상층운량의 40~50일 계절만 진동)

  • 하경자;서애숙
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.619-633
    • /
    • 1996
  • Intraseasonal variability of the tropical convection over the Indian/western Pacific is studied using the Geostationary Meteorological Satellite high cloud amount. This study is directed to find the tropical-extratropical interaction in the frequency range of intraseasonal and interannual variabilities of the summer monsoon occured over the domain of 90E-171W and 495-50N. Especially, in order to investigate the intraseasonal interaction of last Asia summer monsoon associated with the tropical convections in the high cloud amounts, the spatial and time structure of the intraseasonal oscillation for the movement-and the evolution of the large-scale connections are studied. To describe the spatial and the time evolution, the extended empirical orthogonal function analysis is applied. The first mode may be considered to a normal structure, indicating that the strong convection band over 90E-120E is extended to sastward but this mode was detected as the intraseasonal variability during summer monsoon. It is found that the dominant intraseasonal mode of the tropical convection consists of the spatial changes over a broad period range centered around 40~50days.

  • PDF

The Theta Analysis on the Components of Ground Reaction Force According to the Ground Conditions During Gait (보행 시 지면조건에 따른 지면반력 성분의 세타 분석)

  • Ryew, Che-Cheong;Hyun, Seung-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the theta on the components of ground reaction force according to the ground conditions during gait. Method : Six healthy women(mean age: 22 yrs, mean height: $166.14{\pm}2.51cm$, mean body weights: $56.61{\pm}4.58kg$) participated in this study. The medial-lateral GRF(Fx 1), anterior-posterior GRF(Fy 1, Fy 2), vertical GRF(Fz 1, Fz 2, Fz 3), and impact loading rate were determined from time function and frequency domain. Also, GRF theta were time function and forces. Results : Fx 1, Fy 1 and Fy 2 of stair descending showed significant statistically higher forces than that of level walking, and ascending. Fz 1 of stairs descending showed significant statistically higher forces than that of level walking and stairs ascending(theta $88.62^{\circ}$). Also, Fz 2 of level walking showed significant statistically higher forces than that of stairs ascending and descending(theta $65.78^{\circ}$). Fz 3 of stairs ascending showed significant statistically higher forces than that of level walking and stairs descending($65.26^{\circ}$). Impact loading rate of stairs descending showed significant statistically higher forces than that of level and ascending walking. The GRF showed similar correlation with GRF theta(r=.603) according to the ground conditions during gait. Conclusion : These results suggest that the GRF theta can be used in conjunction with a gait characteristics, prediction of loading rate and dynamic stability.

Expression Profiling of WSSV ORF 199 and Shrimp Ubiquitin Conjugating Enzyme in WSSV Infected Penaeus monodon

  • Jeena, K.;Prasad, K. Pani;Pathan, Mujahid Khan;Babu, P. Gireesh
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1184-1189
    • /
    • 2012
  • White spot syndrome virus (WSSV) is one of the major viral pathogens affecting shrimp aquaculture. Four proteins, WSSV199, WSSV 222, WSSV 249 and WSSV 403, from WSSV are predicted to encode a RING-H2 domain, which in presence of ubiquitin conjugating enzyme (E2) in shrimp can function as viral E3 ligase and modulate the host ubiquitin proteasome pathway. Modulation of host ubiquitin proteasome pathway by viral proteins is implicated in viral pathogenesis. In the present study, a time course expression profile analysis of WSSV Open Reading Frame (ORF) 199 and Penaeus monodon ubiquitin conjugating enzyme (PmUbc) was carried out at 0, 3, 6, 12, 24, 48 and 72 h post WSSV challenge by semi-quantitative RT-PCR as well as Real Time PCR. EF1${\alpha}$ was used as reference control to normalize the expression levels. A significant increase in PmUbc expression at 24 h post infection (h.p.i) was observed followed by a decline till 72 h.p.i. Expression of WSSV199 was observed at 24 h.p.i in WSSV infected P. monodon. Since the up-regulation of PmUbc was observed at 24 h.p.i where WSSV199 expression was detected, it can be speculated that these proteins might interact with host ubiquitination pathway for viral pathogenesis. However, further studies need to be carried out to unfold the molecular mechanism of interaction between host and virus to devise efficient control strategies for this chaos in the shrimp culture industry.

Study of Optical Fiber Sensor Systems for the Simultaneous Monitoring of Fracture and Strain in Composite Laminates (복합적층판의 변형파손 동시감지를 위한 광섬유 센서 시스템에 관한 연구)

  • 방형준;강현규;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.58-67
    • /
    • 2003
  • To perform the realtime strain and fracture monitoring of the smart composite structures, two optical fiber sensor systems are proposed. The two types of the coherent sources were used for fracture signal detection - EDFA with FBG and EDFA with Fabry-Perot filter. These sources were coupled to EFPI sensors imbedded in composite specimens. To understand the characteristics of matrix crack signals, at first, we performed tensile tests using surface attached PZT sensors by changing the thickness and width of the specimens. This paper describes the implementation of time-frequency analysis such as short time Fourier transform (STFT) and wavelet transform (WT) for the quantitative evaluation of fracture signals. The experimental result shows the distinctive signal features in frequency domain due to the different specimen shapes. And, from the test of tensile load monitoring using optical fiber sensor systems, measured strain agreed with the value of electric strain gage and the fracture detection system could detect the moment of damage with high sensitivity to recognize the onset of micro-crack fracture signal.

An Experimental Study on the Internet Web Retrieval Using Ontologies (온톨로지를 이용한 인터넷웹 검색에 관한 실험적 연구)

  • Kim, Hyun-hee;Ahn, Tae-kyoung
    • Journal of the Korean Society for information Management
    • /
    • v.20 no.1
    • /
    • pp.417-455
    • /
    • 2003
  • Ontologies are formal theories that are suitable for implementing the semantic web. which is a new technology that attempts to achieve effective retrieval, integration, and reuse of web resources. Ontologies provide a way of sharing and reusing knowledge among people and heterogeneous applications systems. The role of ontologies is that of making explicit specified conceptualizations. In this context, domain and generic ontologies can be shared, reused, and integrated in the analysis and design stage of information and knowledge systems. This study aims to design an ontology for international organizations. and build an Internet web retrieval system based on the proposed ontology. and finally conduct an experiment to compare the system performance of the proposed system with that of internet search engines focusing relevance and searching time. This study found that average relevance of ontology-based searching and Internet search engines are 4.53 and 2.51, and average searching time of ontology-based searching and Internet search engines are 1.96 minutes and 4.74 minutes.