• Title/Summary/Keyword: Time synchronization algorithm

Search Result 248, Processing Time 0.023 seconds

An EIBS Algorithm for Wireless Sensor Network with Life Time Prolongation (수명 연장 기능의 무선 센서 네트워크용 EIBS 알고리즘)

  • Bae, Shi-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.65-73
    • /
    • 2014
  • Since Time synchronization is also critical in Wireless Sensor Networks (WSN) like other networks, a time synchronization protocol for WSN called IBS(Indirect-Broadcast Synchronization) has been already proposed in 2012. As IBS operates in cluster tree topology, network lifetime may be mainly shortened by cluster head node[s], which usually consumes more power than cluster member (i.e. non-cluster head) nodes. In this paper, I propose enhanced version of IBS (called EIBS) which saves overall energy and prolongs network lifetime by re-constructing partial cluster tree locally. Compared with other tree construction approaches, this tree reconstruction algorithm is not only simpler, but also more efficient in the light of overall power consumption and network lifetime.

Outlier Detection Method for Time Synchronization

  • Lee, Young Kyu;Yang, Sung-hoon;Lee, Ho Seong;Lee, Jong Koo;Lee, Joon Hyo;Hwang, Sang-wook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.397-403
    • /
    • 2020
  • In order to synchronize a remote system time to the reference time like Coordinated Universal Time (UTC), it is required to compare the time difference between the two clocks. The time comparison data may have some outliers and the time synchronization performance can be significantly degraded if the outliers are not removed. Therefore, it is required to employ an effective outlier detection algorithm for keeping high accurate system time. In this paper, an outlier detection method is presented for the time difference data of GNSS time transfer receivers. The time difference data between the system time and the GNSS usually have slopes because the remote system clock is under free running until synchronized to the reference clock time. For investigating the outlier detection performance of the proposed algorithm, simulations are performed by using the time difference data of a GNSS time transfer receiver corrected to a free running Cesium clock with intentionally inserted outliers. From the simulation, it is investigated that the proposed algorithm can effectively detect the inserted outliers while conventional methods such as modified Z-score and adjusted boxplot cannot. Furthermore, it is also observed that the synchronization performance can be degraded to more than 15% with 20 outliers compared to that of original data without outliers.

Time Synchronization Algorithm using the Clock Drift Rate and Reference Signals Between Two Sensor Nodes (클럭 표류율과 기준 신호를 이용한 두 센서 노드간 시간 동기 알고리즘)

  • Kim, Hyoun-Soo;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Time synchronization algorithm in wireless sensor networks is essential to various applications such as object tracking, data encryption, duplicate detection, and precise TDMA scheduling. This paper describes CDRS that is a time synchronization algorithm using the Clock Drift rate and Reference Signals between two sensor nodes. CDRS is composed of two steps. At first step, the time correction is calculated using offset and the clock drift rate between the two nodes based on the LTS method. Two nodes become a synchronized state and the time variance can be compensated by the clock drift rate. At second step, the synchronization node transmits reference signals periodically. This reference signals are used to calculate the time difference between nodes. When this value exceeds the maximum error tolerance, the first step is performed again for resynchronization. The simulation results on the performance analysis show that the time accuracy of the proposed algorithm is improved, and the energy consumption is reduced 2.5 times compared to the time synchronization algorithm with only LTS, because CDRS reduces the number of message about 50% compared to LTS and reference signals do not use the data space for timestamp.

A Revised Timing-sync Protocol for Sensor Networks by a Polling Method

  • Bae, Shi-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.8
    • /
    • pp.23-28
    • /
    • 2015
  • TPSN(Timing-sync Protocol for Sensor Networks), the representative of time synchronization protocol for WSN(wireless sensor networks), was developed to provide higher synchronization accuracy and energy efficiency. So, TPSN's approach has been referenced by so many other WSN synchronization schemes till now. However, TPSN has a collision problem due to simultaneous transmission among competing nodes, which causes more network convergence delay for a network-wide synchronization. A Polling-based scheme for TPSN is proposed in this paper. The proposed scheme not only shortens network-wide synchronization time of TPSN, but also reduce collision traffic which lead to needless power consumption. The proposed scheme's performance has been evaluated and compared with an original scheme by simulation. The results are shown to be better than the original algorithm used in TPSN.

HIGH-SPEED SOFTWARE FRAME SYNCHRONIZER USING SSE2 TECHNOLOGY

  • Koo, In-Hoi;Ahn, Sang-Il;Kim, Tae-Hoon;Sakong, Young-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.522-525
    • /
    • 2007
  • Frame Synchronization is applied to not only digital data transmission for data synchronization between transmitter and receiver but also data communication with satellite. When satellite image data with high resolution and mass storage is transmitted, hardware frame synchronizer for real-time processing or software frame synchronizer for post-processing is used. In case of hardware, processing with high speed is available but data loss may happen for Search of Frame Synchronization. In case of software, data loss does not happen but speed is relatively slow. In this paper, Pending Buffer concept was proposed to cope with data loss according to processing status of Frame Synchronization. Algorithm to process Frame synchronization with high speed using bit threshold search algorithm with pattern search technique and SIMD is also proposed.

  • PDF

Wireless Network Synchronization Algorithm based on IEEE 802.11 WLANs (Wireless Local Area Networks) for Multimedia Services (멀티미디어 서비스를 위한 IEEE 802.11 WLANs 기반의 무선 네트워크 동기화 알고리즘)

  • Yoon, Jong-Won;Joung, Jin-Oo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.225-232
    • /
    • 2008
  • When a single source of multimedia contents is distributed to multiple reproduction devices, the audio and video contents require synchronous play for multi-channel stereo sound and lip-synchronization. The multimedia system in vehicle, especially, has researched to move to wireless environments from legacy wired environments. This paper proposes the advanced algorithm for providing synchronized services of real-time multimedia traffic in IEEE 802.11 WLANs [1]. For these, we implement the advanced IEEE 1588 Precision Time Protocol [2] and the environments for simulation. Also, we estimate and analysis performance of the algorithm, then we experiment and analysis after the porting of algorithm in wireless LAN devices (Linksys wrt-350n AP network device) to characterize timing synchronization accuracy.

  • PDF

High-Performance Synchronization for Circuit Emulation in an Ethernet MAN

  • Hadzic Ilija;Szurkowski Edward S.
    • Journal of Communications and Networks
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • Ethernet is being deployed in metropolitan area networks (MANs) as a lower-cost alternative to SONET-based infrastructures. MANs are usually required to support common communication services, such as voice and frame relay, based on legacy synchronous TDM technology in addition to asynchronous packet data transport. This paper addresses the clock synchronization problem that arises when transporting synchronous services over an asynchronous packet infrastructure, such as Ethernet. A novel algorithm for clock synchronization is presented combining time-stamp methods used in the network time protocol (NTP) with signal processing techniques applied to measured packet interarrival times. The algorithm achieves the frequency accuracy, stability, low drift, holdover performance, and rapid convergence required for viable emulation of TDM circuit services over Ethernet.

The Implementation of the Compensation Algorithm of Time Delay for Microwave Polar Transmitters (마이크로파 폴라 송신기의 시간지연 보상 알고리즘 구현)

  • Kim, Min-Soo;Lee, Kun-Joon;Rhee, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.790-797
    • /
    • 2015
  • In this paper, We made the microwave polar transmitter based on the software to analyze the synchronization status between the phase signal and the amplitude signal of polar transmitter, and analyzed the result. In order to solve the time delay mismatch problem, we applied simplified compensation algorithm and compared the synchronization status between the two paths before and after compensation. Before compensation, the value of time delay mismatch was the maximum of 97 nsec at 9.3 GHz with the occupied bandwidth of 12 MHz, but after applying the compensation algorithm, the signals between the two paths were synchronized, and we identified the occupied bandwidth could recover to the previous 3.7 MHz.

Time and Frequency Synchronization Algorithm for IEEE 802.16.1a Based Talk-Around Direct Communications (IEEE 802.16.1a 기반 단말간 직접통신을 위한 시간 및 주파수 동기화 알고리즘)

  • Bae, Jimin;Kim, Hyunsu;Chang, Sungcheol;Yoon, Chulsik;Choi, Jihoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.2
    • /
    • pp.191-200
    • /
    • 2013
  • In this paper, we propose a new estimation method of time offset, frequency offset, and signal to interference plus noise ratio (SINR) using the synchronization channel preamble to provide IEEE 802.16.1a based talk-around direct communications (TDC). The proposed scheme estimates the time offset and frequency offset both in the time domain and in the frequency domain considering the preamble structure. In addition, it improves the estimation accuracy by combining the estimated values in two domains taking into account TDC synchronization scenarios. Through numerical simulations in the TDC channel environments, the performance of the proposed algorithm is compared with those of existing techniques such as the time domain estimation and the frequency domain estimation.

An Energy Efficient Time Synchronization Technique Based on WUSB over WBAN Protocol for Wearable Computer Systems (웨어러블 컴퓨터 시스템을 위한 WUSB over WBAN 프로토콜의 에너지 효율적인 시간 동기 기술)

  • Hur, Kyeong;Sohn, Won-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.7
    • /
    • pp.879-884
    • /
    • 2012
  • In this Paper, we propose an Energy Efficient Time Synchronization technique based on WUSB (Wireless USB) over WBAN (Wireless Body Area Networks) protocol required for Wearable Computer systems. For this purpose, the proposed Time Synchronization algorithm minimizes power consumption and estimates time information with accuracy. It is executed on the basis of WUSB over WBAN protocol at each sensor node comprising peripherals of a wearable computer system. It minimizes power consumption by exchanging time stamp packets and forming a hierarchical structure.