• Title/Summary/Keyword: Time slice

Search Result 239, Processing Time 0.027 seconds

Time-Multiplexed RF Transmission to Improve $B_1$ Homogeneity in High Field MRI

  • Han, Byung-Hee;Seo, Jeung-Hun;Heo, Hye-Young;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.99-106
    • /
    • 2008
  • To improve $B_1$ homogeneity in high field MRI, the RF power is applied to the transmit array coil elements sequentially in the time-multiplexed way. Since only a single coil element is activated in a time-multiplexing slot, the global standing wave formation in the human body is greatly suppressed. The time-multiplexing slot width is on the order of micro seconds, hence, high-order-harmonic slices can be placed far from the transmit coil and simultaneous multiple slice selection can be avoided. The $B_1$ homogeneities of a birdcage coil and an eight-channel transmit array coil have been compared through finite difference time domain simulations. The simulation results indicate that the proposed technique can reduce the peak-to-peak $B_1$ inhomogeneity down to one fourth of the transmission with a birdcage coil on the central plane of the human head model at 3 T. The mimicking experiments at 3 T, eight separate experiments with a single coil element activated and image reconstruction by combining the eight images, also show promising results. It is expected that the proposed technique has some advantages over other $B_1$ improving methods in real practice since simple RF switching circuitries are only necessary and electromagnetic coupling between the coil elements is out of concern in its realization.

A study on Hemo-Dynamic information Within 30 seconds in DCE 3D Breast MRI : Experienced Reports (DCE 3D Breast MRI 검사 시 30 sec 이내에 혈류 역학적 정보에 대한 연구 : Experienced Reports)

  • Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.16 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • The purpose of this study evaluated the hemo-dynamic information within 30 seconds clinically in 3D breast MRI. From January to March 2014, A total of 40 people were examined at 1.5 Tesla(Philips, Medical System, Achieva, The Netherlands) MRI equipments using 16 channel SENSE breast coil. The imaging parameters on vibrant are fellow as: $TR/TE/FA^{\circ}$/Matrix size/Slice thickness/Slab($5ms/2ms/10^{\circ}/180{\times}139{\times}2mm/80$). This study used a Gadovist and injected it with injection speed of 4 ml /sec by auto injector with 15 ml saline flushing. Firstly, for the delay time study, it divided three different delay time from immediately, 20 seconds, and 30 seconds. In quantitative analysis, the ROI signal intensities of tumor and surrounding tissues were measured retrospectively. In qualitative analysis, the image quality was scored from 1 to 5 point by one experienced radiological technologists as a visual test. The significance level of each delay time was evaluated with a one-way ANOVA(p<0.05). In the visual test, score levels on 30 seconds delay time was a little bit higher than others(p<0.05). The signal intensity of the tumor were $1445{\pm}360$, $1410{\pm}320$, $1510{\pm}415$ on immediately, 20 seconds, and 30 seconds and score levels were $4.18{\pm}0.85$, $3.54{\pm}0.94$, $4.45{\pm}0.74$(p<0.05). The data on immediate images showed better results than that others(p<0.05). Conclusively, Although it has been high scored in 30sec delay time for visual test in order to avoid failure in 20second, 30seconds delay time after contrast media administration, we recommend that the DCE 3D breast MRI commence immediately.

  • PDF

Clinical Application of Acute Ischemic Stroke in Perfusion Computed Tomography (초급성 허혈성 뇌졸중에서 관류 전산화단층촬영의 임상적 적용에 대한 연구)

  • Lee, Jong-Seok;Yoo, Beong-Gyu;Kweon, Dae-Cheol
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.149-160
    • /
    • 2007
  • Recent advent of 64-multidetctor (MD) CT enables more coverage of Z-axis in the perfusion imaging. The purpose of this study was to evaluate the clinical usefulness of perfusion CT by using 64-MD CT in detecting the lesion in patients with acute stroke. The perfusion CT was performed by using 64-MD CT in 62 consecutive patients who were initially suspected to have subacute ischemic stroke symptoms during the period of recent 9 months. These patients had subacute stroke (n=62). CT scanning was conducted with Jog Mode which provided 16 imaging slices with 5 mm of slice thickness, and 8 cm of coverage in Z-axis. Scan interval was 1 seconds for each imaging slice and total 15 scans were repeated. After CT scanning, perfusion maps (CBV, CBF, MTT and TTP) were created at Extended Brilliance Workstation. The CBV and CBF maps showed that lesions were smaller images. While on the MTT and TTP map lesions were seen to be larger fifty-one were large than they appeared on these images. Two slices of perfusion maps obtained at the level of the basal ganglia were chosen to simulate conventional older perfusion CT with 8 cm of coverage in Z-axis. TTP and MTT maps may be clinically useful for evaluation of the penumbral zone in cases of aubacute cerebral ischemic stroke. The perfusion CT is useful in the assessment of acute stroke as an initial imaging modality.

  • PDF

Hardware Design for JBIG2 Encoder on Embedded System (임베디드용 JBIG2 부호화기의 하드웨어 설계)

  • Seo, Seok-Yong;Ko, Hyung-Hwa
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.182-192
    • /
    • 2010
  • This paper proposes the hardware IP design of JBIG2 encoder. In order to facilitate the next generation FAX after the standardization of JBIG2, major modules of JBIG2 encoder are designed and implemented, such as symbol extraction module, Huffman coder, MMR coder, and MQ coder. ImpulseC Codeveloper and Xilinx ISE/EDK program are used for the synthesis of VHDL code. To minimize the memory usage, 128 lines of input image are processed succesively instead of total image. The synthesized IPs are downloaded to Virtex-4 FX60 FPGA on ML410 development board. The four synthesized IPs utilize 36.7% of total slice of FPGA. Using Active-HDL tool, the generated IPs were verified showing normal operation. Compared with the software operation using microblaze cpu on ML410 board, the synthesized IPs are better in operation time. The improvement ratio of operation time between the synthesized IP and software is 17 times in case of symbol extraction IP, and 10 times in Huffman coder IP. MMR coder IP shows 6 times faster and MQ coder IP shows 2.2 times faster than software only operation. The synthesized H/W IP and S/W module cooperated to succeed in compressing the CCITT standard document.

Design of Time Synchronizer for Advanced LR-WPAN Systems (개선된 LR-WPAN 시스템을 위한 시간 동기부 설계)

  • Park, Mincheol;Lee, Dongchan;Jang, Soohyun;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.476-482
    • /
    • 2014
  • Recently, with the growth of various sensor applications, the need of wireless communication systems which can support variable data rate is increasing. IEEE 802.15.4 LR-WPAN system using 2.45 GHz frequency band is very popular for the sensor applications. However, since LR-WPAN only supports the data rate of 250 kbps, it has a limit to be applied to various sensor networks. Therefore, we define the preamble structure which can support the data rates of 31.25 kbps, 62.5 kbps, 125 kbps, and present the low-complexity hardware architecture for time synchronizer based on double-correlation algorithm which can resist the CFO (carrier frequency offset). Implementation results show that the proposed time synchronizer include the logic slice of 18.36 K and four DSP48s, which are reduced at the rate of 79.1% and 99.4%, respectively, compared with existing architecture.

Computational Analysis of Tumor Angiogenesis Patterns Using a Growing Brain Tumor Model

  • Shim, Eun-Bo;Kwon, Young-Keun;Ko, Hyung-Jong
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • Tumor angiogenesis was simulated using a two-dimensional computational model. The equation that governed angiogenesis comprised a tumor angiogenesis factor (TAF) conservation equation in time and space, which was solved numerically using the Galerkin finite element method. The time derivative in the equation was approximated by a forward Euler scheme. A stochastic process model was used to simulate vessel formation and vessel elongation towards a paracrine site, i.e., tumor-secreted basic fibroblast growth factor (bFGF). In this study, we assumed a two-dimensional model that represented a thin (1.0 mm) slice of the tumor. The growth of the tumor over time was modeled according to the dynamic value of bFGF secreted within the tumor. The data used for the model were based on a previously reported model of a brain tumor in which four distinct stages (namely multicellular spherical, first detectable lesion, diagnosis, and death of the virtual patient) were modeled. In our study, computation was not continued beyond the 'diagnosis' time point to avoid the computational complexity of analyzing numerous vascular branches. The numerical solutions revealed that no bFGF remained within the region in which vessels developed, owing to the uptake of bFGF by endothelial cells. Consequently, a sharp, declining gradient of bFGF existed near the surface of the tumor. The vascular architecture developed numerous branches close to the tumor surface (the brush-border effect). Asymmetrical tumor growth was associated with a greater degree of branching at the tumor surface.

  • PDF

A Study on The Time For Movement of Myosin Heads by the Twitch Stimulation (Twitch Stimulation에 의한 Myosin Heads 움직임의 시간분석 연구)

  • Kim, Duck-Sool;Jung, Jung-Su;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.182-189
    • /
    • 2004
  • On contraction of the muscles, marked changes in X-ray reflections are observed, suggesting that conformational changes of contractile molecules and the movement of myosin heads during muscle contraction. Time slice requires tension peak after the onset of stimulation and the height of tension peak depends on the number of twitch cycle. The muscles were stimulated by five successive stimuli at an interval of 80 ms started while the tension was still being exerted by the muscles. The intensity of $I_{11}$, $I_{10}$, $143{\AA}$ and $215{\AA}$ reflection measured with 5ms time resolution and is recorded in isometric tension. The peak height of $I_{11}$ and $143{\AA}$ intensity is changed after the onset of a stimulation $I_i$, and the length of twitch is shortened by successive twitches in the case of stimulation $T_i$. On the other hand, the peak height of In and $215{\AA}$ intensity starts to decrease at the 1st twitch and remains constant at low peak height without appreciable recovery during the contraction term. In the case of successive twitch stimulation, the myosin heads of muscle are once moved from their resting position and never returned to their initial position.

3-D Visualization of Reservoir Characteristics through GOCAD (GOCAD를 이용한 저류층 속성정보의 3차원 시각화 연구)

  • Gwak Sang-Hwan;Lee Doo Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.80-83
    • /
    • 2001
  • Four seismic reflection horizons in 3-D seismic data, coherence derived from the seismic data, and 38 well logs from the Boonsville Gas Filed in Texas were tried to be integrated and visualized in 3 dimensions. Time surface was constructed from pick times of the reflection horizons. Average velocities to each horizon at 38 well locations were calculated based on depth markers from the well logs and time picks from the 3-D seismic data. The time surface was transformed to depth surface through velocity interpolation. Coherence was calculated on the 3-D seismic data by semblance method. Spatial distribution of the coherence is captured easily in 3-D visualization. Comparing to a time-slice of seismic data, distinctive stratigraphic features could be correctly recognized on the 3-D visualization.

  • PDF

Real-time 2-D Separable Median Filter (실시간 2차원 Separable 메디안 필터)

  • Jae Gil Jeong
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.3
    • /
    • pp.321-330
    • /
    • 2002
  • A 2-D median filter has many applications in various image and video signal processing areas. The rapid development in VLSI technology makes it possible to implement a real-time or near real-time 2-D median filter with reasonable cost. For the efficient VLSI implementation, the algorithm should have characteristics such as small memory requirements, regular computations, and local data transfers. This paper presents an architecture of the real-time two-dimensional separable median filter which has appropriate characteristics for the VLSI implementation. For the efficient two-dimensional median filter, a separable two-dimensional median filtering structure and a bit-sliced pipelined median searching algorithm are used. A behavioral simulator is implemented with C language and used for the analysis of the presented architecture.

  • PDF

Functional MR Imaging of Cerbral Motor Cortex: Comparison between Conventional Gradient Echo and EPI Techniques (뇌 운동피질의 기능적 영상: 고식적 Gradient Echo기법과 EPI기법간의 비교)

  • 송인찬
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.109-113
    • /
    • 1997
  • Purpose: To evaluate the differences of functional imaging patterns between conventional spoiled gradient echo (SPGR) and echo planar imaging (EPI) methods in cerebral motor cortex activation. Materials and Methods: Functional MR imaging of cerebral motor cortex activation was examined on a 1.5T MR unit with SPGR (TRfrE/flip angle=50ms/4Oms/$30^{\circ}$, FOV=300mm, matrix $size=256{\times}256$, slice thickness=5mm) and an interleaved single shot gradient echo EPI (TRfrE/flip angle = 3000ms/40ms/$90^{\circ}$, FOV=300mm, matrix $size=128{\times}128$, slice thickness=5mm) techniques in five male healthy volunteers. A total of 160 images in one slice and 960 images in 6 slices were obtained with SPGR and EPI, respectively. A right finger movement was accomplished with a paradigm of an 8 activation/ 8 rest periods. The cross-correlation was used for a statistical mapping algorithm. We evaluated any differences of the time series and the signal intensity changes between the rest and activation periods obtained with two techniques. Also, the locations and areas of the activation sites were compared between two techniques. Results: The activation sites in the motor cortex were accurately localized with both methods. In the signal intensity changes between the rest and activation periods at the activation regions, no significant differences were found between EPI and SPGR. Signal to noise ratio (SNR) of the time series data was higher in EPI than in SPGR by two folds. Also, larger pixels were distributed over small p-values at the activation sites in EPI. Conclusions: Good quality functional MR imaging of the cerebral motor cortex activation could be obtained with both SPGR and EPI. However, EPI is preferable because it provides more precise information on hemodynamics related to neural activities than SPGR due to high sensitivity.

  • PDF