• Title/Summary/Keyword: Time series topic analysis

검색결과 67건 처리시간 0.026초

비정형 텍스트 기반의 토픽 모델링을 이용한 건설 안전사고 동향 분석 (A Study on the Trends of Construction Safety Accident in Unstructured Text Using Topic Modeling)

  • 이상규
    • 한국산학기술학회논문지
    • /
    • 제19권10호
    • /
    • pp.176-182
    • /
    • 2018
  • 본 연구는 건설 안전사고에 대한 트랜드 분석을 위해 LDA(Latent Dirichlet Allocation) 기반의 토픽모델링(Topic Modeling)을 제시하여 분석하고자 한다. 특히, 건설산업의 안전사고를 예방하기 위해 제시되고 있는 기존의 다양한 정형데이터 분석에서 벗어난 비정형 데이터 분석 기반의 토픽 모델링을 통해 건설 안전사고 주요 핵심 키워드의 흐름에 대해 파악이 가능하다. 본 방법론을 적용하기 위해 540개의 건설 안전사고 관련 뉴스데이터를 수집하였다. 이를 기반으로, 10가지 토픽과 각 토픽 내의 10가지 키워드를 통해 주요 이슈를 도출하였고 각 토픽에 대한 2017년 1월부터 2018년 2월까지의 뉴스 데이터를 월별 시계열 분석을 통해 향후 토픽에 관한 이슈를 예측한다. 본 연구를 바탕으로 향후 건설 안전사고의 다양한 이슈를 선제적으로 예측하고 이를 기반으로 건설 안전사고 정책과 연구에 좋은 방향을 제시할 것으로 판단한다.

머신러닝 및 딥러닝 연구동향 분석: 토픽모델링을 중심으로 (Research Trends Analysis of Machine Learning and Deep Learning: Focused on the Topic Modeling)

  • 김창식;김남규;곽기영
    • 디지털산업정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to examine the trends on machine learning and deep learning research in the published journals from the Web of Science Database. To achieve the study purpose, we used the abstracts of 20,664 articles published between 1990 and 2017, which include the word 'machine learning', 'deep learning', and 'artificial neural network' in their titles. Twenty major research topics were identified from topic modeling analysis and they were inclusive of classification accuracy, machine learning, optimization problem, time series model, temperature flow, engine variable, neuron layer, spectrum sample, image feature, strength property, extreme machine learning, control system, energy power, cancer patient, descriptor compound, fault diagnosis, soil map, concentration removal, protein gene, and job problem. The analysis of the time-series linear regression showed that all identified topics in machine learning research were 'hot' ones.

섬유소재 분야 특허 기술 동향 분석: DETM & STM 텍스트마이닝 방법론 활용 (Research of Patent Technology Trends in Textile Materials: Text Mining Methodology Using DETM & STM)

  • 이현상;조보근;오세환;하성호
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권3호
    • /
    • pp.201-216
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the trend of patent technology in textile materials using text mining methodology based on Dynamic Embedded Topic Model and Structural Topic Model. It is expected that this study will have positive impact on revitalizing and developing textile materials industry as finding out technology trends. Design/methodology/approach The data used in this study is 866 domestic patent text data in textile material from 1974 to 2020. In order to analyze technology trends from various aspect, Dynamic Embedded Topic Model and Structural Topic Model mechanism were used. The word embedding technique used in DETM is the GloVe technique. For Stable learning of topic modeling, amortized variational inference was performed based on the Recurrent Neural Network. Findings As a result of this analysis, it was found that 'manufacture' topics had the largest share among the six topics. Keyword trend analysis found the fact that natural and nanotechnology have recently been attracting attention. The metadata analysis results showed that manufacture technologies could have a high probability of patent registration in entire time series, but the analysis results in recent years showed that the trend of elasticity and safety technology is increasing.

트위터 오피니언 마이닝을 통한 코로나19 기간 대학 비대면 수업에 대한 의견 고찰 (Exploring Opinions on University Online Classes During the COVID-19 Pandemic Through Twitter Opinion Mining)

  • 김동훈;강정;주영준
    • 한국문헌정보학회지
    • /
    • 제55권4호
    • /
    • pp.5-22
    • /
    • 2021
  • 본 연구는 코로나바이러스감염증-19 (이하 코로나19) 확산 이후 대학의 부분 또는 전면 비대면 수업으로의 전환에 대해 소셜 미디어 플랫폼 중 하나인 트위터에서 이를 어떻게 생각하고 논의하고 있는지를 파악하기 위해 진행되었다. 이를 위해 트위터에서 비대면 수업 관련 트윗을 수집한 후 감성분석 및 시계열 주제 분석을 실시하였다. 감성분석결과, 전반적으로 긍정적인 여론보다 부정적인 여론이 많았지만 시간이 지남에 따라 점차 부정적인 여론이 줄어드는 경향이 나타남을 확인하였다. 또한 월별 감성점수분포를 통해 학기 중이 방학기간보다 감성점수 분포의 폭이 넓음을 확인하였고, 이를 통해 학기 중일 때가 방학 때보다 비대면 수업에 대해 더 다양한 감정과 의견을 교환한다는 사실을 확인할 수 있었다. 다음으로 긍정트윗과 부정트윗을 구분하여 시계열 주제 분석을 실시한 결과, 긍정트윗에서는 수업환경 및 장비, 긍정적인 감정 표현, 강의시청장소, 언어수업, 시험 및 과제와 같은 다섯 가지 주요한 주제가 나타났으며, 부정트윗에서는 시간(수업시간, 쉬는시간), 시험 및 과제, 부정적인 감정 표현, 수업환경 및 장비와 같은 네 가지 주요한 주제가 나타남을 확인하였다. 또한 각 주제별 대표 키워드들의 비율을 통해 시간에 따른 주제의 변화를 파악함으로써 비대면 수업에 대한 여론의 트렌드를 살펴 보고자 하였다. 본 연구는 기존 비대면 수업 관련 연구들과는 달리 소셜 미디어 중 하나인 트위터를 활용하여 국내 대학의 비대면 수업에 대한 전반적인 의견을 파악하고자 하였으며, 감성분석과 시계열 주제 분석을 활용하여 비대면 수업에 대한 긍부정 여론을 나누어 식별 및 시간의 흐름에 따른 트렌드의 변화를 파악하였다는 점에서 학문적 함의를 지닌다. 또한 연구결과는 국내 대학에서의 비대면 수업에 대한 구성 및 개선방안 등에 활용될 수 있으며, 비대면 수업을 설계하는 대학 및 교수자들에게 도움이 될 수 있다는 점에서 실질적인 함의를 지닌다.

트위터 데이터를 이용한 네트워크 기반 토픽 변화 추적 연구 (Topic-Network based Topic Shift Detection on Twitter)

  • 진설아;허고은;정유경;송민
    • 정보관리학회지
    • /
    • 제30권1호
    • /
    • pp.285-302
    • /
    • 2013
  • 본 연구는 높은 접근성과 간결성으로 인해 방대한 양의 텍스트를 생산하는 트위터 데이터를 분석하여 토픽의 변화 시점 및 패턴을 파악하였다. 먼저 특정 상품명에 관한 키워드를 추출한 후, 동시출현단어분석(Co-word Analysis)을 이용하여 노드와 에지를 통해 토픽과 관련 키워드를 직관적으로 파악 가능한 네트워크로 표현하였다. 이후 네트워크 분석 결과를 검증하기 위해 출현빈도 기반의 시계열 분석과 LDA 토픽 모델링을 실시하였다. 또한 트위터 상의 토픽 변화와 언론 기사 검색결과를 비교한 결과, 트위터는 언론 뉴스에 즉각적으로 반응하며 부정적 이슈를 빠르게 확산시키는 것을 확인하였다. 이를 통해 기업은 대중의 부정적 의견을 신속하게 파악하고 이에 대한 즉각적인 의사결정 및 대응을 위한 도구로 본 연구방법을 활용할 수 있을 것으로 기대된다.

토픽 모델링을 이용한 해방기 아동상 연구 - 「어린이신문」을 중심으로 - (A Study on Children's Images during the Liberation Period Using Topic Modeling: With a focus on The Children's News)

  • 장석은;이혜은
    • 한국비블리아학회지
    • /
    • 제33권3호
    • /
    • pp.157-178
    • /
    • 2022
  • 본 연구는 해방기에 간행된 아동신문인 「어린이신문」에 나타난 아동상을 탐색하는 데 목적이 있다. 이를 위해 현전하지 않는 제34호를 제외하고, 1945년 12월 1일의 창간호부터 1947년 12월 13일의 제86호를 대상으로 빈도 분석, 토픽 모델링, 시계열 분석을 수행하였다. 빈도 분석 결과 나라, 학교, 가정과 연관이 있는 키워드가 자주 나타났고, 토픽 모델링을 통해서는 '애국심을 가진 아동상', '과학적 소양을 지닌 아동상', '예술적 소양을 지닌 아동상', '사회적 존재로서의 아동상'이 도출되었다. 시계열 분석 결과 「어린이신문」이 발간된 해방 초기에는 애국 관련 토픽의 비중이 높았으나 과학, 예술과 같은 주제의 비율이 점차 높아지는 것을 볼 때, 아동상이 다양화되었다는 것을 확인할 수 있었다.

텍스트마이닝을 활용한 연구동향 분석: 소셜네트워크서비스를 중심으로 (Research Trends Investigation Using Text Mining Techniques: Focusing on Social Network Services)

  • 윤혜진;김창식;곽기영
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권3호
    • /
    • pp.513-519
    • /
    • 2018
  • 본 연구의 목적은 소셜네트워크서비스 주제에 관한 연구동향을 조사하는 것이다. 연구의 목적을 달성하기 위해서 웹오브사이언스 데이터베이스에서 제목에 'Social Network Service(SNS)'를 포함하는 1994년부터 2016년까지 출판된 논문 초록 308편을 분석 하였다. 본 연구에서는 텍스트마이닝 기법 중에서 최근 많이 적용되는 토픽모델링기법을 활용하였다. 토픽모델링 분석결과 20개의 토픽(신뢰, 지지, 만족 모델, 조직 지배구조, 모바일 시스템, 인터넷 마케팅, 대학생 효과, 의견 확산, 고객, 정보보호, 건강관리, 웹 협업, 방법, 학습 효과, 지식, 개인 이론, 아동 지지, 알고리즘, 미디어 참여, 문맥 시스템)이 도출되었다. 또한 시계열회귀분석 결과 모든 토픽은 상승 추세로 나타났다.

다이나믹 토픽모델링 및 네트워크 분석 기법을 통한 블록체인 관련 국내 연구 동향 분석 (Analyzing Research Trends in Blockchain Studies in South Korea Using Dynamic Topic Modeling and Network Analysis)

  • 김동훈;오찬희;주영준
    • 정보관리학회지
    • /
    • 제38권3호
    • /
    • pp.23-39
    • /
    • 2021
  • 본 연구에서는 국내 블록체인 연구의 전반적인 동향 및 시간에 따른 주제를 파악하기 위해 대학 및 기관 협력 네트워크 분석, 키워드 동시출현 네트워크 분석, 다이나믹 토픽모델링 기법을 활용한 시계열 주제 분석을 실시하였다. 대학 및 기관 협력 네트워크 분석 결과, 숭실대학교, 순천향대학교, 고려대학교, 한국과학기술원 등이 블록체인 연구의 주요 대학으로 나타났으며 대학 이외의 기관으로는 국방부, 한국철도기술연구원, 삼일회계법인, 한국전자통신연구원 등이 주요 연구기관으로 나타났다. 키워드 동시출현 네트워크 분석 결과, 가상자산(암호화폐, 비트코인, 이더리움, 가상화폐), 블록체인 기술(분산원장, 분산원장기술), 금융(스마트계약), 정보보안(보안, 프라이버시, 개인정보) 등에 대한 키워드들이 주요하게 나타났으며, 모든 네트워크 중심성 지표에서 스마트계약이 가장 높은 수치를 나타내어 주요한 주제임을 확인할 수 있었다. 마지막으로 시계열 주제분석 결과, 블록체인기술, 블록체인생태계, 블록체인 적용분야1(무역, 온라인투표, 부동산), 블록체인 적용분야2(식품, 관광, 유통, 미디어), 블록체인 적용분야3(경제, 금융) 등 다섯 개의 주요 주제들을 도출하였으며, 각 주제별 대표 키워드들의 비율변화를 통해 주제별 변화를 관찰할 수 있었다. 본 연구는 기존의 국내 블록체인 연구동향 연구들과 크게 세 가지 관점(데이터, 방법론, 해석)에서 차이점을 나타내고 있다. 1) 최근 2년 사이 급증한 블록체인 연구를 포함하였고, 2) 대학 및 기관 네트워크 분석과 시계열 주제분석이라는 새로운 분석기법 및 연구방법을 활용하였으며, 3) 이를 통해 블록체인 연구를 주도하는 대학 및 기관을 식별하고 국내 블록체인 연구 트렌드를 파악하였다. 끝으로, 연구결과가 블록체인 관련 연구 협력 및 정책 수립과 관련 기술 개발 계획에 활용될 수 있다는 점에서 실질적인 함의를 시사한다.

동적 토픽분석을 활용한 스마트그리드 연구동향 분석 (Research Trend Analysis for Smart Grids Using Dynamic Topic Modeling)

  • 나상태;안주언;정민호;김자희
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.613-620
    • /
    • 2017
  • The power grid has been changed to a smart grid system to satisfy the growing need for power grid complexity, demand, reliability, security, and efficiency with a combination of existing power and ICT technology. This study analyzes the research trends in smart grid technology in the period since the introduction of the smart grid system and compares it with industrial trends to grasp the progress and characteristics of Smart Grid technology and look for ways to innovate the technology. To do this, we analyze the research trends using dynamic topic modeling, which is capable of time-series research topic analysis. Next, we compare the results of research trends with industrial trends analyzed by Gartner's experts to demonstrate that smart grid research is evolving to the level of industrialization. The results of this study are quantitative analysis through data mining, and it is expected that it will be used in many fields such as companies that want to participate in industry and government agencies that need to establish policies by showing more objective analysis results.

인공지능발달 토픽 프레임 연구 -계열화(seriation)와 통합화(skeumorph)의 사회구성주의 중심으로- (A Study on AI Evolution Trend based on Topic Frame Modeling)

  • 권상희;차현주
    • 한국콘텐츠학회논문지
    • /
    • 제20권7호
    • /
    • pp.66-85
    • /
    • 2020
  • 본 연구의 목적은 AI 기술 특허(전체)와 주요 신문에 나타난 AI 보도 프레임을 바탕으로 AI 발달과정 추세를 예측하고 이를 기술·설명하는 것이다. 이를 위해 지난 9년간 출원된 한국과 미국 기술특허 요약문과 국내 주요 신문의 AI(Artificial Intelligence) 뉴스 텍스트를 분석하였다. 본 연구는 빅데이터를 활용한 토픽모델링과 시계열회귀분석이 사용되었으며, 추가로 네트워크 의제 상관분석과 회귀분석 기법이 사용되었다. 본 연구결과는 다음과 같다. 첫째, Topic 모델링 분석결과, AI 기술특허 요약문에서는 인공지능, 알고리즘 5G(Hot AI 기술) 등의 순으로 확인되었으며, AI 뉴스보도에서는 산업 적용, 데이터 활용과 시장 적용 등의 순으로 확인되어 AI의 사회문화 보도 경향을 나타냈다. 둘째, 시계열회귀분석결과, 상승추세 토픽으로는 사회문화적으로 AI 일상적·문화적 이용과 산업적용 시작이 도출되었다. 하락추세토픽으로는 시스템, 하드웨어 기술 중심으로 나타났다. 셋째, 상관관계와 회귀관계를 활용한 QAP 분석 결과, AI 기술특허와 뉴스 보도 프레임 간의 상관관계는 높은 것으로 나타났다. 이를 통해 AI 발달에서 AI 기술특허와 뉴스 보도 프레임이 미디어 담론의 결정요인에 의해 사회적으로 구성되는 것을 알 수 있었다.