• Title/Summary/Keyword: Time series topic analysis

Search Result 67, Processing Time 0.022 seconds

A Study on the Trends of Construction Safety Accident in Unstructured Text Using Topic Modeling (비정형 텍스트 기반의 토픽 모델링을 이용한 건설 안전사고 동향 분석)

  • Lee, Sang-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.176-182
    • /
    • 2018
  • In order to understand and track the trends of construction safety accident, this study shows the topic trends in the construction safety accident with LDA(Latent Dirichlet Allocation)-based topic modeling method for data analytics. Especially, it performs to figure out the main issue of construction safety accident with unstructured data analysis based on the topic modeling rather than a variety of structured data analysis for preventing to safety accident in construction industry. To apply this methodology, I randomly collected to 540 news article data about construction accident from January 2017 to February 2018. Based on the unstructured data with the LDA-based topic modeling, I found the 10 topics and identified key issues through 10 keyword in each 10 topics. I forecasted the topic issue related to construction safety accident based on analysis of time-series trends about the news data from January 2017 to February 2018. With this method, this research gives a hint about ways of using unstructured news article data to anticipate safety policy and research field and to respond to construction accident safety issues in the future.

Research Trends Analysis of Machine Learning and Deep Learning: Focused on the Topic Modeling (머신러닝 및 딥러닝 연구동향 분석: 토픽모델링을 중심으로)

  • Kim, Chang-Sik;Kim, Namgyu;Kwahk, Kee-Young
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.2
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to examine the trends on machine learning and deep learning research in the published journals from the Web of Science Database. To achieve the study purpose, we used the abstracts of 20,664 articles published between 1990 and 2017, which include the word 'machine learning', 'deep learning', and 'artificial neural network' in their titles. Twenty major research topics were identified from topic modeling analysis and they were inclusive of classification accuracy, machine learning, optimization problem, time series model, temperature flow, engine variable, neuron layer, spectrum sample, image feature, strength property, extreme machine learning, control system, energy power, cancer patient, descriptor compound, fault diagnosis, soil map, concentration removal, protein gene, and job problem. The analysis of the time-series linear regression showed that all identified topics in machine learning research were 'hot' ones.

Research of Patent Technology Trends in Textile Materials: Text Mining Methodology Using DETM & STM (섬유소재 분야 특허 기술 동향 분석: DETM & STM 텍스트마이닝 방법론 활용)

  • Lee, Hyun Sang;Jo, Bo Geun;Oh, Se Hwan;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.30 no.3
    • /
    • pp.201-216
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the trend of patent technology in textile materials using text mining methodology based on Dynamic Embedded Topic Model and Structural Topic Model. It is expected that this study will have positive impact on revitalizing and developing textile materials industry as finding out technology trends. Design/methodology/approach The data used in this study is 866 domestic patent text data in textile material from 1974 to 2020. In order to analyze technology trends from various aspect, Dynamic Embedded Topic Model and Structural Topic Model mechanism were used. The word embedding technique used in DETM is the GloVe technique. For Stable learning of topic modeling, amortized variational inference was performed based on the Recurrent Neural Network. Findings As a result of this analysis, it was found that 'manufacture' topics had the largest share among the six topics. Keyword trend analysis found the fact that natural and nanotechnology have recently been attracting attention. The metadata analysis results showed that manufacture technologies could have a high probability of patent registration in entire time series, but the analysis results in recent years showed that the trend of elasticity and safety technology is increasing.

Exploring Opinions on University Online Classes During the COVID-19 Pandemic Through Twitter Opinion Mining (트위터 오피니언 마이닝을 통한 코로나19 기간 대학 비대면 수업에 대한 의견 고찰)

  • Kim, Donghun;Jiang, Ting;Zhu, Yongjun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.4
    • /
    • pp.5-22
    • /
    • 2021
  • This study aimed to understand how people perceive the transition from offline to online classes at universities during the COVID-19 pandemic. To achieve the goal, we collected tweets related to online classes on Twitter and performed sentiment and time series topic analysis. We have the following findings. First, through the sentiment analysis, we found that there were more negative than positive opinions overall, but negative opinions had gradually decreased over time. Through exploring the monthly distribution of sentiment scores of tweets, we found that sentiment scores during the semesters were more widespread than the ones during the vacations. Therefore, more diverse emotions and opinions were showed during the semesters. Second, through time series topic analysis, we identified five main topics of positive tweets that include class environment and equipment, positive emotions, places of taking online classes, language class, and tests and assignments. The four main topics of negative tweets include time (class & break time), tests and assignments, negative emotions, and class environment and equipment. In addition, we examined the trends of public opinions on online classes by investigating the changes in topic composition over time through checking the proportions of representative keywords in each topic. Different from the existing studies of understanding public opinions on online classes, this study attempted to understand the overall opinions from tweet data using sentiment and time series topic analysis. The results of the study can be used to improve the quality of online classes in universities and help universities and instructors to design and offer better online classes.

Topic-Network based Topic Shift Detection on Twitter (트위터 데이터를 이용한 네트워크 기반 토픽 변화 추적 연구)

  • Jin, Seol A;Heo, Go Eun;Jeong, Yoo Kyung;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.1
    • /
    • pp.285-302
    • /
    • 2013
  • This study identified topic shifts and patterns over time by analyzing an enormous amount of Twitter data whose characteristics are high accessibility and briefness. First, we extracted keywords for a certain product and used them for representing the topic network allows for intuitive understanding of keywords associated with topics by nodes and edges by co-word analysis. We conducted temporal analysis of term co-occurrence as well as topic modeling to examine the results of network analysis. In addition, the results of comparing topic shifts on Twitter with the corresponding retrieval results from newspapers confirm that Twitter makes immediate responses to news media and spreads the negative issues out quickly. Our findings may suggest that companies utilize the proposed technique to identify public's negative opinions as quickly as possible and to apply for the timely decision making and effective responses to their customers.

A Study on Children's Images during the Liberation Period Using Topic Modeling: With a focus on The Children's News (토픽 모델링을 이용한 해방기 아동상 연구 - 「어린이신문」을 중심으로 -)

  • Jang, Seok-Eun;Lee, Hye-Eun
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.33 no.3
    • /
    • pp.157-178
    • /
    • 2022
  • This study explores children's images in The Children's News, a children's newspaper during the Liberation period. For this purpose, frequency analysis, topic modeling, and time series analysis were performed from the first issue of December 1, 1945 to the 86 issue of December 13, 1947, except for No. 34, which was not passed down. As a result of frequency analysis, keywords related to country, school, and family appeared frequently, and through topic modeling, children's images were observed in these topics, including children with patriotism, children with scientific literacy, children with artistic refinement, and children as social beings. The time series analysis results show that the percentage of patriotism-related topics was high during the early days of the Liberation period when The Children's News were published, but as the ratio of topics such as science and art gradually increased, it was confirmed that the image of children was diversified.

Research Trends Investigation Using Text Mining Techniques: Focusing on Social Network Services (텍스트마이닝을 활용한 연구동향 분석: 소셜네트워크서비스를 중심으로)

  • Yoon, Hyejin;Kim, Chang-Sik;Kwahk, Kee-Young
    • Journal of Digital Contents Society
    • /
    • v.19 no.3
    • /
    • pp.513-519
    • /
    • 2018
  • The objective of this study was to examine the trends on social network services. The abstracts of 308 articles were extracted from web of science database published between 1994 and 2016. Time series analysis and topic modeling of text mining were implemented. The topic modeling results showed that the research topics were mainly 20 topics: trust, support, satisfaction model, organization governance, mobile system, internet marketing, college student effect, opinion diffusion, customer, information privacy, health care, web collaboration, method, learning effectiveness, knowledge, individual theory, child support, algorithm, media participation, and context system. The time series regression results indicated that trust, support satisfaction model, and remains of the topics were hot topics. This study also provided suggestions for future research.

Analyzing Research Trends in Blockchain Studies in South Korea Using Dynamic Topic Modeling and Network Analysis (다이나믹 토픽모델링 및 네트워크 분석 기법을 통한 블록체인 관련 국내 연구 동향 분석)

  • Kim, Donghun;Oh, Chanhee;Zhu, Yongjun
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.3
    • /
    • pp.23-39
    • /
    • 2021
  • This study aims to explore research trends in Blockchain studies in South Korea using dynamic topic modeling and network analysis. To achieve this goal, we conducted the university & institute collaboration network analysis, the keyword co-occurrence network analysis, and times series topic analysis using dynamic topic modeling. Through the university & institute collaboration network analysis, we found major universities such as Soongsil University, Soonchunhyang University, Korea University, Korea Advanced Institute of Science and Technology (KAIST) and major institutes such as Ministry of National Defense, Korea Railroad Research Institute, Samil PricewaterhouseCoopers, Electronics and Telecommunications Research Institute that led collaborative research. Next, through the analysis of the keyword co-occurrence network, we found major research keywords including virtual assets (Cryptocurrency, Bitcoin, Ethereum, Virtual currency), blockchain technology (Distributed ledger, Distributed ledger technology), finance (Smart contract), and information security (Security, privacy, Personal information). Smart contracts showed the highest scores in all network centrality measures showing its importance in the field. Finally, through the time series topic analysis, we identified five major topics including blockchain technology, blockchain ecosystem, blockchain application 1 (trade, online voting, real estate), blockchain application 2 (food, tourism, distribution, media), and blockchain application 3 (economy, finance). Changes of topics were also investigated by exploring proportions of representative keywords for each topic. The study is the first of its kind to attempt to conduct university & institute collaboration networks analysis and dynamic topic modeling-based times series topic analysis for exploring research trends in Blockchain studies in South Korea. Our results can be used by government agencies, universities, and research institutes to develop effective strategies of promoting university & institutes collaboration and interdisciplinary research in the field.

Research Trend Analysis for Smart Grids Using Dynamic Topic Modeling (동적 토픽분석을 활용한 스마트그리드 연구동향 분석)

  • Na, Sang-Tae;Ahn, Joo-Eon;Jung, Min-Ho;Kim, Ja-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.613-620
    • /
    • 2017
  • The power grid has been changed to a smart grid system to satisfy the growing need for power grid complexity, demand, reliability, security, and efficiency with a combination of existing power and ICT technology. This study analyzes the research trends in smart grid technology in the period since the introduction of the smart grid system and compares it with industrial trends to grasp the progress and characteristics of Smart Grid technology and look for ways to innovate the technology. To do this, we analyze the research trends using dynamic topic modeling, which is capable of time-series research topic analysis. Next, we compare the results of research trends with industrial trends analyzed by Gartner's experts to demonstrate that smart grid research is evolving to the level of industrialization. The results of this study are quantitative analysis through data mining, and it is expected that it will be used in many fields such as companies that want to participate in industry and government agencies that need to establish policies by showing more objective analysis results.

A Study on AI Evolution Trend based on Topic Frame Modeling (인공지능발달 토픽 프레임 연구 -계열화(seriation)와 통합화(skeumorph)의 사회구성주의 중심으로-)

  • Kweon, Sang-Hee;Cha, Hyeon-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.66-85
    • /
    • 2020
  • The purpose of this study is to explain and predict trends the AI development process based on AI technology patents (total) and AI reporting frames in major newspapers. To that end, a summary of South Korean and U.S. technology patents filed over the past nine years and the AI (Artificial Intelligence) news text of major domestic newspapers were analyzed. In this study, Topic Modeling and Time Series Return Analysis using Big Data were used, and additional network agenda correlation and regression analysis techniques were used. First, the results of this study were confirmed in the order of artificial intelligence and algorithm 5G (hot AI technology) in the AI technical patent summary, and in the news report, AI industrial application and data analysis market application were confirmed in the order, indicating the trend of reporting on AI's social culture. Second, as a result of the time series regression analysis, the social and cultural use of AI and the start of industrial application were derived from the rising trend topics. The downward trend was centered on system and hardware technology. Third, QAP analysis using correlation and regression relationship showed a high correlation between AI technology patents and news reporting frames. Through this, AI technology patents and news reporting frames have tended to be socially constructed by the determinants of media discourse in AI development.